(35S, 42S) Lowest integer factor - r. pienne - 07-26-2014 01:49 PM
Here's a little slow'n'simple routine I wrote for both the HP 35s and Free42, to return the lowest factor from an integer >2, or display "prime" if it is prime.
The argument is taken from the stack and is not validated. Stack is preserved and LastX gets set; named variables are preserved except as stated; numbered registers are not preserved.
35s version
-----------
Affects variables I,J,R. The subroutines in LBL Z are general-purpose state-save/restore routines.
Code:
LBL F (LN=117 CK=706F)
XEQ Z002 save state
STO R
2 / FP x!=0? GTO F012 argument is even?
2 STO R GTO F034 yes: return 2
F012 RCL R SQRT STO J sqrt(arg) -> var J
1 STO I initialise iterator -> var I
F017 2 STO+I increment iterator by 2
RCL J RCL I x<=y? GTO F027 iterator > sqrt?
SF10 EQN "PRIME" PSE GTO F034 yes: display "prime", return arg
F027 RCL R RCL I RMDR x!=0? GTO F017 if not divisible try next iteration
RCL I STO R is divisible: return iterator
F034 XEQ Z046 x<>R restore state
RTN
LBL Z
##### save state #####
Z002 STO J save X in J
R↓ 0 STO I R↓ RCL J STO (I) save X in R0
R↓ 1 STO I R↓ STO (I) save Y in R1
R↓ 2 STO I R↓ STO (I) save Z in R2
R↓ 3 STO I R↓ STO (I) save T in R3
14 STO I 0 FS? 10 1 STO (I) save F10 in R14
15 STO I STO (I) save non-zero (top-of-memory marker) in R15
3 STO I RCL (I) restore T from R3
2 STO I R↓ RCL (I) restore Z from R2
1 STO I R↓ RCL (I) restore Y from R1
RCL J restore X from J
RTN
##### restore state #####
Z046 CF10 14 STO I RCL(I) x!=0? SF10 restore F10 from R14
0 STO I 0 RCL(I) + set lastx
3 STO I RCL(I) recall T from R3
2 STO I R↓ RCL(I) recall Z from R2
1 STO I R↓ RCL(I) recall Y from R1
0 STO I R↓ RCL(I) recall X from R0
RTN
Free42 version
--------------
Subroutines Z1 and Z2 are general-purpose state-save/restore routines.
Code:
FACT LBL "FACT" (88 bytes)
XEQ "Z1" save state
STO 21
2 / FP x!=0? GTO A argument is even?
2 STO 21 GTO E yes: return 2
A LBL A RCL 21 SQRT STO 22 sqrt(arg) -> R22
1 STO 20 initialise iterator -> R20
B LBL B 2 STO+20 increment iterator by 2
RCL 22 RCL 20 x<=y? GTO C iterator > sqrt?
"PRIME" AVIEW GTO E yes: display "prime", return arg
C LBL C RCL 21 RCL 20 MOD x!=0? GTO B if not divisible try next iteration
RCL 20 STO 21 is divisible: return iterator
E LBL E XEQ "Z2" x<>21 restore state
RTN
Z1 LBL "Z1" ##### save state #####
STO 00 save X
R↓ STO 01 save Y
R↓ STO 02 save Z
R↓ STO 03 save T
R↓
RTN
Z2 LBL "Z2" ##### restore state #####
0 RCL 00 + set lastx
RCL 03 recall T
RCL 02 recall Z
RCL 01 recall Y
RCL 00 recall X
RTN
Any probs, let us know.
R.
(Edit on 2014-08-03: improved description, 35s code)
|