(SR-56) Programmieren mit dem Taschenrechner SR-56 - Printable Version +- HP Forums (https://www.hpmuseum.org/forum) +-- Forum: Not HP Calculators (/forum-7.html) +--- Forum: Not remotely HP Calculators (/forum-9.html) +--- Thread: (SR-56) Programmieren mit dem Taschenrechner SR-56 (/thread-22327.html) |
(SR-56) Programmieren mit dem Taschenrechner SR-56 - SlideRule - 09-13-2024 03:29 PM For our German readers, Programmieren mit dem Taschenrechner SR-56, Erste Auflage 1978, J. Schärf, H. Schierer, W. Baron, © Oldenbourg, 163 pages 1. Grundlagen 9 - 48 1-10 2. Programmierung 49 - 83 11-16 3. Anwendung 84 - 161 {27 subsections} BEST! SlideRule RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - Thomas Klemm - 09-14-2024 09:52 AM Although I am not German, I would like to thank you very much for the document. RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - SlideRule - 09-14-2024 10:50 AM Gerne Best! SlideRule RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - Nihotte(lma) - 09-14-2024 07:58 PM (09-13-2024 03:29 PM)SlideRule Wrote: For our German readers, Hello everyone ! Thanks, SlideRule! Nostalgia sequence! In my high school, around 1981-1983, introduction to computers was done with this calculator and other SR-52s!! Keep yourself healthy! Laurent RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - SlideRule - 09-14-2024 11:43 PM More to come. BEST! SlideRule RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - joeres - 09-15-2024 10:01 AM (09-13-2024 03:29 PM)SlideRule Wrote: For our German readers, Programmieren mit dem Taschenrechner SR-56, Erste Auflage 1978, J. Schärf, H. Schierer, W. Baron, © Oldenbourg, 163 pages Hello SlideRule, thank you very much, I have been thinking about adding an SR-56 to my collection for a while. I think the decision has now been made ;-). Best regards Joerg RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - Maximilian Hohmann - 09-15-2024 02:55 PM Hello! (09-15-2024 10:01 AM)joeres Wrote: …I have been thinking about adding an SR-56 to my collection for a while. I think the decision has now been made ;-). With a little luck you can get the one that is currently being offered on german (ex eBay) classifieds (Kleinanzeigen). It seems to be working and the price is OK. But I am not the seller so I don’t know for sure. I remember that it took me very long to find a working one for a decent price, much longer than th SR-52. Regards Max RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - joeres - 09-16-2024 05:11 AM (09-15-2024 02:55 PM)Maximilian Hohmann Wrote: Hello! Many thanks for the tip. The video “HHC 2016: In Praise of the SR-56 Calculator” by Gene Wright (https://www.youtube.com/watch?v=oDtWB5ebssw) is fine, great, thank you very much. Best regards, Joerg RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - Maximilian Hohmann - 09-16-2024 09:01 AM Hello! (09-16-2024 05:11 AM)joeres Wrote: The video “HHC 2016: In Praise of the SR-56 Calculator” by Gene Wright (https://www.youtube.com/watch?v=oDtWB5ebssw) is fine... Indeed! I never attended one of the conferences in the US (and most probably never will) but I always watch the videos. After seeing this one I had to have an SR-56 :-) Regards Max RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - Roberto Volpi - 09-16-2024 09:49 AM A nice reading, just not to forget how non hp programmable calculators were. RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - Thomas Klemm - 09-16-2024 07:15 PM Cubic equation \(x^3 + ax^2 + bx + c = 0\) A real root is calculated using Newton's approximation method. Then the roots \(x_2\) and \(x_3\) are calculated from the quadratic equation \(x^2 + px + x = 0\) with \(p = a + x_1\) and \(q = x_1^2 + a x_1 + b\). This is a translation of the program on page 108 for the HP-25: Code: 01: 24 00 : RCL 0 ; x_i Examples Set degree of accuracy: EEX -6 STO 6 \(x^3 -19x^2 + 81x + 101 = 0\) \(x_0 = 1\) 1 STO 0 -19 STO 1 81 STO 2 101 STO 3 f CLEAR PRGM R/S -1.000000000 R/S 10.00000000 x<->y 1.000000000 \( \begin{align} x_1 &= -1 \\ x_2 &= 10 + i \\ x_3 &= 10 - i \\ \end{align} \) \(x^3 -13x^2 + 20x + 100 = 0\) \(x_0 = 2\) 2 STO 0 -13 STO 1 20 STO 2 100 STO 3 f CLEAR PRGM R/S 5.000000000 R/S 10.00000000 x<->y -1.999999999 \( \begin{align} x_1 &= 5 \\ x_2 &= 10 \\ x_3 &= -2 \\ \end{align} \) It is interesting that we can squeeze the 86 unmerged steps of the SR-56 into the 49 maximum steps of the HP-25. It seems to me that the quality of these programs is better than that of the Applications Library. For examples, compare "Greatest Common Divisor/Least Common Multiple" with "Größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches". Or then "First Order Differential Equations" with "Runge-Kutta-Verfahren für Differentialgleichungen 1. Ordnung": the latter uses 4th order while the former uses only 3rd order. RE: (SR-56) Programmieren mit dem Taschenrechner SR-56 - Sadsilence - 09-17-2024 01:40 PM Vielen Dank! (09-13-2024 03:29 PM)SlideRule Wrote: For our German readers, Programmieren mit dem Taschenrechner SR-56, Erste Auflage 1978, J. Schärf, H. Schierer, W. Baron, © Oldenbourg, 163 pages |