HP Forums
HP-Prime CAS versus TI-CAS (TI68k & TI-nspire) - Printable Version

+- HP Forums (https://www.hpmuseum.org/forum)
+-- Forum: HP Calculators (and very old HP Computers) (/forum-3.html)
+--- Forum: HP Prime (/forum-5.html)
+--- Thread: HP-Prime CAS versus TI-CAS (TI68k & TI-nspire) (/thread-7552.html)



HP-Prime CAS versus TI-CAS (TI68k & TI-nspire) - compsystems - 01-10-2017 08:05 PM

Robotic translator = (

Why do I consider the HP-Prime CAS better than the TI-CAS (TI68k & TI-nspire)?

1: because it allows me to better manipulate algebraic expressions, observing intermediate steps. Ideal for creating step-by-step programs without having to create subroutines or conversion to strings to show intermediate steps

(Although if the HP-Prime CAS did not rewrite some of the expressions would be much better), It is customary to see on mathbook, the inequalities, the numbers to the right side and the symbolic expressions to the left side.
0 > (x ^ 2 + x-6) ==
(x ^ 2 + x-6) < 0

Graphic comparison
[Image: ti68k_versus_hpprime_image00.png]


Code comparison
HP-PRIME CAS
PHP Code:
#cas
    
testInequality1():=
    
begin
     local expr0
;
     print;

     print(
"step1:");
     
expr0 := '(3*x^2-2*x-2) < (2*x^2-3*x+4)';
     
//expr0 :=  (3*x^2-2*x-2) < (2*x^2-3*x+4);
     
print(string(expr0)); 
     print(
"");

     print(
"step2: +(-2*x^2)");
     
expr0 := expr0 + -2*x^2;
     print(
string(expr0)); 
     
expr0 := simplify(expr0); // Requires a sentence more of simplification.
     
print("simplify → " +expr0);
     print(
"");

     print(
"step3: +(3*x)");
     
expr0 := expr0 3*x;
     print(
string(expr0)); 
     
expr0 := simplify(expr0); 
     print(
"simplify → "+expr0);
     print(
"");

     print(
"step4: +(-4)");
     
expr0 := expr0 + -4;
     print(
string(expr0)); 
     
expr0 := simplify(expr0); 
     print(
"simplify → "+expr0);
     print(
"");

     return 
expr0;   
    
end;
#end 

TI-CAS
PHP Code:
// ti68k
inequali()
Prgm
 Local expr0
 ClrIO
 Disp 
"step1: "
 
3*x^2-2*x-2*x^2-3*x+4 → expr0
 Disp expr0

 Disp 
"step2: +(-­2*x^2)"
 
expr0 ­2*x^2 → expr0
 Disp expr0

 Disp 
"step3: +3*x"
 
expr0 3*x → expr0
 Disp expr0

 Disp 
"step4: +(-­4)"Pause
 expr0 
+ -­4 → expr0
 Disp expr0
EndPrgm 

Disadvantages, does not handle simplifying operations and others on inequalities.

I would like to know your options
Why do you consider that one is better or the other?