Fooling the CASIO ClassWiz fx-991LA X - Printable Version +- HP Forums (https://www.hpmuseum.org/forum) +-- Forum: Not HP Calculators (/forum-7.html) +--- Forum: Not remotely HP Calculators (/forum-9.html) +--- Thread: Fooling the CASIO ClassWiz fx-991LA X (/thread-8347.html) Fooling the CASIO ClassWiz fx-991LA X - Gerson W. Barbosa - 05-14-2017 10:41 PM $$\frac{\rm{e}^{\frac{23}{4}-{\left({\left(\frac{40}{211}\right)}^{2}+100\right)}^{-2}}}{100}$$ $\rm{\pi}$ ;-) RE: Fooling the CASIO ClassWiz fx-991LA X - lrdheat - 05-15-2017 01:23 AM Great approximation! Fooled my fx-991EX as well. My Prime shows the approximation departs from pi by <1 part in 10^-12. RE: Fooling the CASIO ClassWiz fx-991LA X - lrdheat - 05-15-2017 01:32 AM In double precision mode, the approximation varies from pi by~8.21*10^-14 on my WP 34S RE: Fooling the CASIO ClassWiz fx-991LA X - Paul Dale - 05-15-2017 01:33 AM Very nice approximation correct to fourteen digits! Code: 3.1415926535897111461 3.1415926535897932384                ^^^^^^ The second is π. Pauli RE: Fooling the CASIO ClassWiz fx-991LA X - Gerson W. Barbosa - 05-15-2017 02:58 AM (05-15-2017 01:23 AM)lrdheat Wrote:  Great approximation! Fooled my fx-991EX as well. My Prime shows the approximation departs from pi by <1 part in 10^-12. This will almost fit the fx-991ES screen: $$\frac{1501}{150115}\rm{e}^{\frac{23}{4}}$$ No fooling this time, though: $$3.141592653$$ "http://wes.casio.com/math/index.php?q=I-273A+U-0005000CC3F8+M-C10000AD00+S-090410100000100E1210B00051DA+R-0314159265289162010000000000000000000000+E-C81D1A313530311B1A3135303131351B1E721AC81D1A32331B1A341B1E1B" RE: Fooling the CASIO ClassWiz fx-991LA X - Gerson W. Barbosa - 05-15-2017 04:14 AM (05-15-2017 01:33 AM)Paul Dale Wrote:  Very nice approximation correct to fourteen digits! Code: 3.1415926535897111461 3.1415926535897932384                ^^^^^^ The second is π. Pauli Notice $$ln(100\pi)=5.749900072$$ is close to 23/4 (but not close enough). I like the following better, found with help of HP-32SII solver: $$\ln\left(\frac{16\ln\left(878\right)}{\ln\left(16\ln\left(878\right)\right)}\r​ight)$$ "http://wes.casio.com/math/index.php?q=I-273A+U-0005000CC3F8+M-C10000AD00+S-090410100000100E1210B00051DA+R-0314159265376844010000000000000000000000+E-75C81D1A313675383738D01B1A75313675383738D0D01B1ED0" Five digits reused once yielding 10 correct digits. Gerson. Edited. Trouble with LATEX here on Chrome, so I've added a picture. Also, I cannot link the CASIO WES website here, the address between quotes above.