(12C) 3n + 1 conjecture
|
07-06-2018, 10:16 AM
Post: #1
|
|||
|
|||
(12C) 3n + 1 conjecture
This program allows to test the 3n + 1 conjecture.
Consider an integer n. If it's even, divide it by 2 (n÷2) If it's odd, multiply by 3 and add 1 (3n + 1) No matter what value of n, the sequence will always reach 1. The question is: if we start with an arbitrary integer will we always reach 1? Nobody knows. Example: Start with integer 17 17 R/S --> 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 Program: Collatz conjecture Code:
Gamo |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(12C) 3n + 1 conjecture - Gamo - 07-06-2018 10:16 AM
RE: (12C) 3n + 1 conjecture - Thomas Klemm - 07-06-2018, 06:59 PM
RE: (12C) 3n + 1 conjecture - Dieter - 07-06-2018, 07:25 PM
RE: (12C) 3n + 1 conjecture - Dieter - 07-06-2018, 07:13 PM
RE: (12C) 3n + 1 conjecture - Joe Horn - 07-06-2018, 09:50 PM
RE: (12C) 3n + 1 conjecture - Dieter - 07-07-2018, 07:36 AM
RE: (12C) 3n + 1 conjecture - Thomas Klemm - 07-06-2018, 10:31 PM
RE: (12C) 3n + 1 conjecture - Joe Horn - 07-07-2018, 03:10 AM
RE: (12C) 3n + 1 conjecture - Gamo - 07-07-2018, 01:51 AM
RE: (12C) 3n + 1 conjecture - Thomas Klemm - 07-07-2018, 08:37 AM
RE: (12C) 3n + 1 conjecture - Joe Horn - 07-07-2018, 02:24 PM
RE: (12C) 3n + 1 conjecture - Dieter - 07-07-2018, 04:57 PM
RE: (12C) 3n + 1 conjecture - Joe Horn - 07-07-2018, 07:04 PM
|
User(s) browsing this thread: 1 Guest(s)