(12C) 3n + 1 conjecture
|
07-06-2018, 07:13 PM
(This post was last modified: 07-06-2018 07:21 PM by Dieter.)
Post: #3
|
|||
|
|||
RE: (12C) 3n + 1 conjecture
(07-06-2018 10:16 AM)Gamo Wrote: This program allows to test the 3n + 1 conjecture. What? More than 30 steps? And even R0 is used? Waaaayyyy too complicated. ;-) Code: 01 FIX 0 Hint: if you want to check if n is even there is no need to check if 2*frac(n/2) is zero. Testing frac(n/2) will do. This again means that n/2 still is in LastX, so 6*LastX yields 3*n.... Still too long? Replace the final lines 13...18 with LstX GTO 00. The numbers are then displayed with [R/S]. Dieter |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(12C) 3n + 1 conjecture - Gamo - 07-06-2018, 10:16 AM
RE: (12C) 3n + 1 conjecture - Thomas Klemm - 07-06-2018, 06:59 PM
RE: (12C) 3n + 1 conjecture - Dieter - 07-06-2018, 07:25 PM
RE: (12C) 3n + 1 conjecture - Dieter - 07-06-2018 07:13 PM
RE: (12C) 3n + 1 conjecture - Joe Horn - 07-06-2018, 09:50 PM
RE: (12C) 3n + 1 conjecture - Dieter - 07-07-2018, 07:36 AM
RE: (12C) 3n + 1 conjecture - Thomas Klemm - 07-06-2018, 10:31 PM
RE: (12C) 3n + 1 conjecture - Joe Horn - 07-07-2018, 03:10 AM
RE: (12C) 3n + 1 conjecture - Gamo - 07-07-2018, 01:51 AM
RE: (12C) 3n + 1 conjecture - Thomas Klemm - 07-07-2018, 08:37 AM
RE: (12C) 3n + 1 conjecture - Joe Horn - 07-07-2018, 02:24 PM
RE: (12C) 3n + 1 conjecture - Dieter - 07-07-2018, 04:57 PM
RE: (12C) 3n + 1 conjecture - Joe Horn - 07-07-2018, 07:04 PM
|
User(s) browsing this thread: 1 Guest(s)