[VA] SRC#001 - Spiky Integral
|
07-19-2018, 01:22 AM
Post: #34
|
|||
|
|||
RE: [VA] SRC#001 - Spiky Integral
(07-19-2018 12:27 AM)Thomas Klemm Wrote:(07-18-2018 05:32 PM)ijabbott Wrote: Is there a neat formula for just the constant term when converting the product to a sum? There is an asymptotic formula, but it doesn't help much: https://cs.uwaterloo.ca/journals/JIS/VOL...ivan8.html (((n^2+n)/2+1) mod 2)*sqrt(6/pi)*2^(n-1)/(n*sqrt(n)) n = 3 -> 1.06385 (1) n = 4 -> 1.38198 (1) n = 8 -> 7.81764 (7) n = 11 -> 38.7893 (35) n = 27 -> 661051 (632602) n = 1000 -> 2.34135e296 (2.3385429e296) A small correction might help a bit: (((n^2+n)/2+1) mod 2)* sqrt(6/pi)*2^(n-1)*(1-6/(5*n)+21/(20*n^2)-1/(8*n^3)+3/n^4)/(n*sqrt(n)) n = 3 ->0.7969 (1) n = 4 -> 1.07157 (1) n = 8 -> 6.77707 (7) n = 11 -> 34.8986 (35) n = 27 -> 632623 (632602) n = 1000 -> n = 1000 -> 2.33854293231e296 (2.33854293496e296) Regards, Gerson. |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)