Post Reply 
[VA] SRC#001 - Spiky Integral
07-21-2018, 04:06 AM
Post: #39
RE: [VA] SRC#001 - Spiky Integral
(07-20-2018 08:06 PM)Albert Chan Wrote:  For big N, integral is dominated mostly by the area of spike:

I(N) ~ 4 \(\int_{0}^{\pi /(2N)} F dx \)

I did the integral in Python (plain float):

I(20000) ~ 4 * 7.67448983276e-07 = 3.0697959331e-06

Both values agreed each other, to 11 digits.


Thanks both for the I(20000) result and for another interesting approach. These results might be useful to improve the correction terms of the approximation formula.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: [VA] SRC#001 - Spiky Integral - pier4r - 07-11-2018, 11:10 AM
RE: [VA] SRC#001 - Spiky Integral - Pjwum - 07-12-2018, 10:32 AM
RE: [VA] SRC#001 - Spiky Integral - DavidM - 07-15-2018, 07:53 PM
RE: [VA] SRC#001 - Spiky Integral - Gerson W. Barbosa - 07-21-2018 04:06 AM
RE: [VA] SRC#001 - Spiky Integral - Werner - 07-18-2018, 06:17 AM



User(s) browsing this thread: 3 Guest(s)