Post Reply 
Geometry Stumper
08-15-2018, 02:55 PM
Post: #12
RE: Geometry Stumper
Here is the prove, using power of Mathematica Smile

Triangle scaled so base = 1, height = 1
Setup so A = {0,0}, B = {1, 0}, C = {k, 1}

If CDE is straight line with scaled triangle, it will still be straight, unscaled

Code:
In[1]:= pointE = {x, y} /. Solve[y == ae*x == be*(x - 1), {x, y}] // First

             be       ae be
Out[1]= {-(-------), --------}
           ae - be   -ae + be

In[2]:= pointD = pointE /. {ae -> -1/ae, be -> -1/be} // Simplify

           ae        1
Out[2]= {-------, --------}
         ae - be  -ae + be

In[3]:= pointC = {k, 1};

In[4]:= bisect = t /. Solve[{1/k == 2t/(1 - t*t)}, t] (* solve for ad, ae *)

                        2                  2
Out[4]= {-k - Sqrt[1 + k ], -k + Sqrt[1 + k ]}

In[5]:= ae = Last[bisect] (* pick the positive slope *)

                       2
Out[5]= -k + Sqrt[1 + k ]

In[6]:= be = ae /. k -> k-1 (* line BC slope = 1/(k-1), not 1/k *)

                             2
Out[6]= 1 + Sqrt[1 + (-1 + k) ] - k

In[7]:= Det[{pointD - pointC, pointE - pointC}] == 0 // Simplify (* CDE on the same line ? *)

Out[7]= True
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Geometry Stumper - Albert Chan - 08-14-2018, 01:45 PM
RE: Geometry Stumper - Thomas Puettmann - 08-14-2018, 06:04 PM
RE: Geometry Stumper - Albert Chan - 08-14-2018, 06:58 PM
RE: Geometry Stumper - Thomas Puettmann - 08-14-2018, 08:35 PM
RE: Geometry Stumper - Albert Chan - 08-15-2018, 12:39 AM
RE: Geometry Stumper - Voldemar - 08-15-2018, 06:38 AM
RE: Geometry Stumper - Albert Chan - 08-15-2018, 11:14 AM
RE: Geometry Stumper - Voldemar - 08-15-2018, 11:56 AM
RE: Geometry Stumper - Albert Chan - 08-15-2018, 12:29 PM
RE: Geometry Stumper - Voldemar - 08-15-2018, 01:16 PM
RE: Geometry Stumper - Albert Chan - 08-15-2018, 07:57 PM
RE: Geometry Stumper - Thomas Puettmann - 08-15-2018, 07:29 AM
RE: Geometry Stumper - jwhsu - 08-16-2018, 12:30 AM
RE: Geometry Stumper - Albert Chan - 08-15-2018 02:55 PM
RE: Geometry Stumper - Albert Chan - 08-15-2018, 07:23 PM
RE: Geometry Stumper - Thomas Puettmann - 08-16-2018, 04:04 PM
RE: Geometry Stumper - Paul Dale - 08-17-2018, 06:29 AM
RE: Geometry Stumper - brickviking - 08-21-2018, 12:01 AM
RE: Geometry Stumper - Thomas Puettmann - 08-15-2018, 09:46 PM
RE: Geometry Stumper - Albert Chan - 08-15-2018, 11:02 PM
RE: Geometry Stumper - Thomas Puettmann - 08-16-2018, 08:26 AM
RE: Geometry Stumper - Albert Chan - 08-16-2018, 06:46 PM
RE: Geometry Stumper - Albert Chan - 09-03-2018, 01:59 PM
RE: Geometry Stumper - Albert Chan - 10-04-2018, 07:58 PM
RE: Geometry Stumper - Albert Chan - 02-24-2019, 02:37 PM
RE: Geometry Stumper - Albert Chan - 02-25-2019, 06:05 AM



User(s) browsing this thread: 1 Guest(s)