Namir, Byte and REXX
|
09-10-2018, 04:00 PM
Post: #10
|
|||
|
|||
RE: Namir, Byte and REXX
We can use the Complex-Step Derivative Approximation mentioned in Derivatives on HP 42S to calculate with a single subroutine call both \(f(x)\) and \(f'(x)\) in Newton's method:
\(x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}\) Code: 00 { 34-Byte Prgm } For the equation \(2x^2+3x-12=0\) of the given example this program can be used: Code: 00 { 19-Byte Prgm } Initialisation 1E-8 STO "h" Iteration 5 XEQ "NEWTON" y: 2.30434782609 x: 2.69565217391 R/S y: 0.77053902071 x: 1.92511315320 R/S y: 1.10972947392E-1 x: 1.81414020581 R/S y: 2.40138878229E-3 x: 1.81173881703 R/S y: 1.12553786619E-6 x: 1.81173769149 R/S y: 2.47260969077E-13 x: 1.81173769149 Cheers Thomas |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Namir, Byte and REXX - Massimo Gnerucci - 09-07-2018, 11:32 AM
RE: Namir, Byte and REXX - Zaphod - 09-08-2018, 06:34 PM
RE: Namir, Byte and REXX - Geoff - 09-10-2018, 03:07 PM
RE: Namir, Byte and REXX - Duane Hess - 09-09-2018, 05:36 AM
RE: Namir, Byte and REXX - Massimo Gnerucci - 09-09-2018, 10:34 AM
RE: Namir, Byte and REXX - toml_12953 - 09-10-2018, 12:11 PM
RE: Namir, Byte and REXX - toml_12953 - 09-10-2018, 12:14 PM
RE: Namir, Byte and REXX - Massimo Gnerucci - 09-10-2018, 01:26 PM
RE: Namir, Byte and REXX - Thomas Klemm - 09-10-2018, 12:52 PM
RE: Namir, Byte and REXX - toml_12953 - 09-11-2018, 12:35 PM
RE: Namir, Byte and REXX - Thomas Klemm - 09-10-2018 04:00 PM
|
User(s) browsing this thread: 1 Guest(s)