Summation on HP 42S
|
09-26-2018, 01:23 PM
Post: #29
|
|||
|
|||
RE: Summation on HP 42S
(09-26-2018 12:36 PM)Gerson W. Barbosa Wrote: As I am kinda lazy, I’ll just ask my HP 50g to do it for me: What does it say ? I bet it look complicated ... Actually, the sum is very easy, once you recognized above formula ∑(k=1,n,2/(k*(k+3))) = 2/3 * ∑(k=1,n,3/(k*(k+3))) = 2/3 * ∑(k=1,n, 1/k - 1/(k+3)) If you tried out different values of k, the sum have at most 6 terms. All the rest cancelled out. ∑(k=1,n,2/(k*(k+3))) = 2/3 * (1 + 1/2 + 1/3 - 1/(n+1) - 1/(n+2) - 1/(n+3)) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 6 Guest(s)