Post Reply 
modular exponentiation?
10-26-2018, 06:08 PM
Post: #36
RE: modular exponentiation?
I just want to mention, that my favorite HP-16C is also able to solve the original problem.

With the modular exponentiation function, which I presenetd in this thread http://www.hpmuseum.org/forum/thread-11674.html in the "General Software Library", it is possible to compute the last (up to) 18 digits of \(\Bigg(\sum_{n=1}^{1000} n^{n} \bmod 10^{10}\Bigg) \bmod 10^{10}\) very easily.

There is only one smal problem left: The computation lasts for about 8 hours.

Best regards
Hartmut
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
modular exponentiation? - Bill Duncan - 06-23-2018, 11:49 PM
RE: modular exponentiation? - Thomas Klemm - 06-24-2018, 12:21 AM
RE: modular exponentiation? - Bill Duncan - 06-24-2018, 03:20 AM
RE: modular exponentiation? - Thomas Klemm - 06-24-2018, 12:33 AM
RE: modular exponentiation? - Thomas Okken - 06-24-2018, 12:48 AM
RE: modular exponentiation? - mfleming - 06-24-2018, 02:46 AM
RE: modular exponentiation? - mfleming - 06-24-2018, 02:58 AM
RE: modular exponentiation? - Paul Dale - 06-24-2018, 03:42 AM
RE: modular exponentiation? - J-F Garnier - 06-24-2018, 08:41 AM
RE: modular exponentiation? - John Keith - 06-28-2018, 12:42 AM
RE: modular exponentiation? - ijabbott - 06-28-2018, 06:07 PM
RE: modular exponentiation? - John Keith - 06-28-2018, 09:40 PM
RE: modular exponentiation? - J-F Garnier - 06-24-2018, 11:32 AM
RE: modular exponentiation? - sasa - 06-24-2018, 10:21 PM
RE: modular exponentiation? - ijabbott - 06-25-2018, 10:09 PM
RE: modular exponentiation? - Bill Duncan - 06-25-2018, 10:45 PM
RE: modular exponentiation? - brickviking - 06-25-2018, 02:04 AM
RE: modular exponentiation? - Thomas Okken - 06-25-2018, 02:44 AM
RE: modular exponentiation? - brickviking - 06-25-2018, 10:21 PM
RE: modular exponentiation? - Bill Duncan - 06-25-2018, 02:49 PM
RE: modular exponentiation? - Thomas Okken - 06-25-2018, 03:43 PM
RE: modular exponentiation? - Bill Duncan - 06-25-2018, 04:06 PM
RE: modular exponentiation? - Thomas Klemm - 06-25-2018, 04:31 PM
RE: modular exponentiation? - StephenG1CMZ - 06-25-2018, 05:42 PM
RE: modular exponentiation? - Thomas Klemm - 06-28-2018, 09:56 PM
RE: modular exponentiation? - John Keith - 06-29-2018, 12:47 AM
RE: modular exponentiation? - Bill Duncan - 07-08-2018, 09:50 PM
RE: modular exponentiation? - Joe Horn - 07-09-2018, 02:32 AM
RE: modular exponentiation? - Thomas Klemm - 07-09-2018, 05:18 AM
RE: modular exponentiation? - Gerald H - 07-09-2018, 09:55 AM
RE: modular exponentiation? - Thomas Klemm - 07-09-2018, 01:37 PM
RE: modular exponentiation? - wynen - 10-26-2018 06:08 PM
RE: modular exponentiation? - rprosperi - 10-26-2018, 07:37 PM
RE: modular exponentiation? - Albert Chan - 10-27-2018, 12:24 AM
RE: modular exponentiation? - pier4r - 10-27-2018, 07:28 PM



User(s) browsing this thread: 1 Guest(s)