Fast Fourier Transform
|
12-09-2018, 11:14 AM
Post: #3
|
|||
|
|||
RE: Fast Fourier Transform
(12-09-2018 02:54 AM)Eddie W. Shore Wrote: Any help and insight is appreciated. Using your sample problem where N = 3: \(x_0 = 0.54\) \(x_1 = 0.66\) \(x_2 = 0.52\) This formula is the definition given for the discrete Fourier transform: \(X_{k}=\sum _{n=0}^{N-1}x_{n}\cdot e^{-{\frac {2\pi i}{N}}kn}\) We can use the following abbreviations for the 3rd roots of 1: \(\Phi = e^{-{\frac {2\pi i}{3}}} = 1 ∠-120°\) \(\Psi = \Phi^2 = \Phi^{-1} = 1 ∠120°\) \(X_{0}=0.54 \cdot e^{-{\frac {2\pi i}{3}} 0\cdot 0}+0.66 \cdot e^{-{\frac {2\pi i}{3}} 0\cdot 1}+ 0.52 \cdot e^{-{\frac {2\pi i}{3}} 0\cdot 2} = 0.54 + 0.66 + 0.52 = 1.72\) \(X_{1}=0.54 \cdot e^{-{\frac {2\pi i}{3}} 1\cdot 0}+0.66 \cdot e^{-{\frac {2\pi i}{3}} 1\cdot 1}+ 0.52 \cdot e^{-{\frac {2\pi i}{3}} 1\cdot 2} = 0.54 + (0.66 + 0.52\cdot\Phi)\cdot\Phi = -0.05000 -i0.12124\) \(X_{2}=0.54 \cdot e^{-{\frac {2\pi i}{3}} 2\cdot 0}+0.66 \cdot e^{-{\frac {2\pi i}{3}} 2\cdot 1}+ 0.52 \cdot e^{-{\frac {2\pi i}{3}} 2\cdot 2} = 0.54 + (0.66 + 0.52\cdot\Psi)\cdot\Psi = -0.05000 +i0.12124\) This is in accordance with the result that the HP Prime returns. HTH Thomas |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Fast Fourier Transform - Eddie W. Shore - 12-09-2018, 02:54 AM
RE: Fast Fourier Transform - toshk - 12-09-2018, 07:59 AM
RE: Fast Fourier Transform - Thomas Klemm - 12-09-2018 11:14 AM
RE: Fast Fourier Transform - Eddie W. Shore - 12-09-2018, 05:24 PM
|
User(s) browsing this thread: 1 Guest(s)