Post Reply 
(50g) Normal Distribution
12-15-2018, 08:26 PM (This post was last modified: 12-17-2018 01:52 AM by Albert Chan.)
Post: #23
RE: (50g) Normal Distribution
(12-15-2018 03:03 PM)Albert Chan Wrote:  k = e-0.88453 / √(2 Pi) = 0.164726 536723 000000 206 ... => 0.164726 536723

Combine above k with 1 Exp method, revision 2, calculate Z(z):

B = z*z/2
D = exp(0.88453 - B) * 0.164726 536723

x = z, rounded to 5 digits
h = z - x
y = B - x²/2 - x h - h²/2

Z(z) = D + y D

Examples:

Z(20.33333 33333) = 6.64644 886819 e-91 + 303 ULP = 6.64644 887122 e-91

Z(16.4285 714286) = 9.84720 298984 e-60 − 301 ULP = 9.84720 298683 e-60
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(50g) Normal Distribution - John Keith - 12-03-2018, 04:20 PM
RE: (50g) Normal Distribution - Dieter - 12-03-2018, 07:05 PM
RE: (50g) Normal Distribution - John Keith - 12-03-2018, 08:45 PM
RE: (50g) Normal Distribution - Dieter - 12-03-2018, 10:18 PM
RE: (50g) Normal Distribution - John Keith - 12-03-2018, 10:59 PM
RE: (50g) Normal Distribution - John Keith - 12-04-2018, 08:54 PM
RE: (50g) Normal Distribution - Dieter - 12-04-2018, 09:48 PM
RE: (50g) Normal Distribution - Dieter - 12-05-2018, 08:49 PM
RE: (50g) Normal Distribution - John Keith - 12-06-2018, 02:58 PM
RE: (50g) Normal Distribution - Dieter - 12-06-2018, 11:08 PM
RE: (50g) Normal Distribution - John Keith - 12-07-2018, 11:21 PM
RE: (50g) Normal Distribution - Dieter - 12-06-2018, 10:54 PM
RE: (50g) Normal Distribution - John Keith - 12-08-2018, 07:13 PM
RE: (50g) Normal Distribution - Albert Chan - 12-15-2018 08:26 PM
RE: (50g) Normal Distribution - Dieter - 12-08-2018, 09:18 PM
RE: (50g) Normal Distribution - John Keith - 12-08-2018, 09:28 PM
RE: (50g) Normal Distribution - John Keith - 01-26-2019, 10:01 PM
RE: (50g) Normal Distribution - pier4r - 01-26-2019, 10:12 PM



User(s) browsing this thread: 1 Guest(s)