New [Set] menu
|
12-17-2018, 03:13 AM
(This post was last modified: 12-18-2019 03:26 PM by compsystems.)
Post: #1
|
|||
|
|||
New [Set] menu
Hello
The concept of set is almost the first thing taught in mathematics, for this reason, I think you should add a submenu in [TOOLS] [Math] [Set] with the following eight instructions, with symbols as tags 1:∪ 2: ∩ 3: \ 4: × 5: ∈ 6: ⊂ 7: Δ 8: ' 1: ∪ example set[ "b", "a", "c", "a" ] union set[ "a", "d" ] //[↵] set["b","a","c","d"] 2: ∩ set[ "b", "a", "c", "a" ] intersect set[ "a", "d" ] //[[↵] set["a"] 3: \ (minus) set[ "b", "a", "c", "a" ] minus set[ "a", "d" ] //[[↵] set["b","c"] 4: × (cartesian product) set[ "b", "a", "c", "a" ] * set[ "a", "d" ] //[ [↵] [["b","a"], ["b","d"], ["a","a"], ["a","d"], ["c","a"], ["c","d"]] 5: ∈ (is_element) evalb(is_element("a",set["b","a","c","a"])) [↵]true // For a more intuitive output the numeric value [>0]/0 should be symbolix true/false, in this way the use of the EVALB() command is avoided. 6: ⊂ (is_included) this function is not yet visible in the hp-prime catalog =( evalb(is_included(set[ "a", "d" ], set[ "b", "a", "c", "a" ])) [↵] false 7: Δ (Symmetric difference ) M_:= set[ "A", "B", "C"]; N_:= set[ "B", "G", "L", "E"]; U_:= set[ "A", "B", "C", "G", "L", "E", "I", "J", "F", "H"] M_ union N_ //[[↵] set["A","B","C","G","L","E"] M_ intersect N_ //[[↵] set["B"] M_ minus N_ //[[↵] set["A","C"] M_ Δ N_ //[[↵] set["G","L","E","A","C"] // Code: PHP Code: (N_ minus M_) union (M_ minus N_) 8: ' (Complement ) M' U //[[↵] set["G","L","E","I","J","F","H"] // Code: U_ minus M_ N' U //[[↵] set["A","C","I","J","F","H"] // Code: U_ minus N_ |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
New [Set] menu - compsystems - 12-17-2018 03:13 AM
RE: New [Set] menu - Eddie W. Shore - 12-18-2018, 12:48 PM
RE: New [Set] menu - Carlos295pz - 12-18-2018, 09:33 PM
RE: New [Set] menu - compsystems - 12-19-2018, 02:16 AM
|
User(s) browsing this thread: 1 Guest(s)