Odd Angles Formula Trivia
|
12-21-2018, 01:10 PM
Post: #2
|
|||
|
|||
RE: Odd Angles Formula Trivia
(12-20-2018 05:38 PM)Albert Chan Wrote: Challenge: prove above pattern continues: if sin(4nx ± x) = f(s,c), then cos(4nx ± x) = ± f(c,s) Let angle A = 4kx + x, s = sin(x), c = cos(x): sin(A+2x) = sin(A) cos(2x) + cos(A) sin(2x) = f(s,c) (c² - s²) + f(c,s) (2 s c) = g(s,c) cos(A+2x) = cos(A) cos(2x) - sin(A) sin(2x) = f(c,s) (c² - s²) - f(s,c) (2 s c) = -g(c,s) sin(A+4x) = sin(A+2x) cos(2x) + cos(A+2x) sin(2x) = g(s,c) (c² - s²) - g(c,s) (2 s c) = h(s,c) cos(A+4x) = cos(A+2x) cos(2x) - sin(A+2x) sin(2x) = -g(c,s) (c² - s²) - g(s,c) (2 s c) = h(c,s) Angles A+2x and A+4x is same as 4(k+1)x ± x Post #1 examples already shows n=1 work, and by induction, if n=k work, n=k+1 also work. QED |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Odd Angles Formula Trivia - Albert Chan - 12-20-2018, 05:38 PM
RE: Odd Angles Formula Trivia - Albert Chan - 12-21-2018 01:10 PM
RE: Odd Angles Formula Trivia - Albert Chan - 08-14-2019, 01:54 PM
RE: Odd Angles Formula Trivia - Albert Chan - 08-15-2019, 01:55 AM
RE: Odd Angles Formula Trivia - Albert Chan - 08-15-2019, 03:42 PM
RE: Odd Angles Formula Trivia - Albert Chan - 12-15-2019, 01:03 AM
RE: Odd Angles Formula Trivia - Albert Chan - 12-15-2019, 01:49 AM
RE: Odd Angles Formula Trivia - Albert Chan - 01-22-2020, 12:45 AM
RE: Odd Angles Formula Trivia - Albert Chan - 10-13-2021, 03:40 AM
|
User(s) browsing this thread: 1 Guest(s)