The lack of handling root functions in hp prime
|
12-22-2018, 03:29 AM
(This post was last modified: 12-28-2018 06:50 AM by yangyongkang.)
Post: #1
|
|||
|
|||
The lack of handling root functions in hp prime
As we all know, rational functions are better than transcendental functions, and polynomial is better than root in rational functions. Therefore, it is more difficult to deal with root simplification. Because of the large computational memory and fast speed on the simulator or XCAS, the problem of jamming or restarting rarely occurs, but the reason for the operation card being stuck or restarted often occurs on the hp prime physical machine. First come to the classic and simple representative example: simplify(sqrt(x+y+2*sqrt(x*y))|x>0, y>0), we want to get sqrt(x)+sqrt(y), But did not get it. Another example: simplify(λ*√((x-a)^2+y^2)+μ*√(x^2+(y-b)^2)|y=sqrt(r^2-x^2)), Simplify(∂(λ*sqrt(a^2-2*x*a+r^2)+μ*sqrt(b^2-2*sqrt(r^2-x^2)*b+r^2) ,x)),solve(∂(λ*sqrt(a^2-2*x*a+r^2)+μ*sqrt(b^2-2*sqrt(r^2-x^2)*b +r^2), x)=0, x),solve(x^2+(x-2)^2+2*y^2-sqrt(x^2+y^2)*sqrt((x-2)^2+y^2)=4,y),solve((2*√3*x^2-2*√3*x*x0+2*√3*y^2-√3*√(3*x^4-6*x0*x^3+6*x^2*y^2+(-2*√3*√(-3*x0^2+6*x0+1)+2*√3)*x^2*y+(6*x0+2-2*√(-3*x0^2+6*x0+1))*x^2-6*x0*x*y^2+3*y^4+(-2*√3*√(-3*x0^2+6*x0+1)+2*√3)*y^3+(6*x0+2-2*√(-3*x0^2+6*x0+1))*y^2)-2*y*√(-3*x0^2+6*x0+1)+2*y) = 0,x),simplify(((-(sqrt(3)))*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3))/6)-((sqrt((3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))-((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+6+48/(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3)))))/2)-(1/2),((-(sqrt(3)))*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3))/6)+((sqrt((3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))-((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+6+48/(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3)))))/2)-(1/2),(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3))/6)-((sqrt((3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))-((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+6-48/(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3)))))/2)-(1/2),(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3))/6)+((sqrt((3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))-((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+6-48/(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3)))))/2)-(1/2)),tcollect((-sqrt(-12*cos(2*x)+26*cos(3*x)+40*cos(4*x)+30*cos(5*x)+12*cos(6*x)+2*cos(7*x)-58*cos(x)-42*sin(2*x)-26*sin(3*x)-2*sin(4*x)+14*sin(5*x)+14*sin(6*x)+6*sin(7*x)+sin(8*x)-34*sin(x)-40)*y*sin(x)-sqrt(-12*cos(2*x)+26*cos(3*x)+40*cos(4*x)+30*cos(5*x)+12*cos(6*x)+2*cos(7*x)-58*cos(x)-42*sin(2*x)-26*sin(3*x)-2*sin(4*x)+14*sin(5*x)+14*sin(6*x)+6*sin(7*x)+sin(8*x)-34*sin(x)-40)*y+8*y*cos(x)^5-8*y*cos(x)^4*sin(x)-8*y*cos(x)^4-32*y*cos(x)^3*sin(x)-40*y*cos(x)^3-8*y*cos(x)^2*sin(x)-8*y*cos(x)^2+16*y*cos(x)*sin(x)+16*y*cos(x))/(16*cos(x)^5+16*cos(x)^4-32*cos(x)^3*sin(x)-32*cos(x)^3-32*cos(x)^2*sin(x)-32*cos(x)^2)), these are slow or stuck or restarted on the hp prime physical machine. The above is the problem I found.Off-topic, it is a Christmas in the West. As a Chinese, I hope everyone is happy Christmas. We are also doing activities here to celebrate the preparation of Christmas, although the relationship between China and the West is very delicate.sorry my poor english
study hard, improve every day |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 8 Guest(s)