Post Reply 
SPN XCAS: MANUAL CALCULO SIMBÓLICO COMPUTACIONAL Y MATEMÁTICA CON XCAS
12-26-2018, 04:16 PM (This post was last modified: 12-26-2018 10:23 PM by compsystems.)
Post: #3
RE: SPN XCAS: MANUAL CALCULO SIMBÓLICO COMPUTACIONAL Y MATEMÁTICA CON XCAS
★ 6.2.4 Transformando un conjunto de soluciones en una expresión booleana: list2exp( set[], vars )

La orden list2exp() devuelve

☆ Caso 1: Si el primer argumento u operando es un conjunto de soluciones de la forma
set[ (var = expresión0), (var = expresión1), … (var = expresiónN) ] retorna una expresión booleana de la forma
(var = expresión0) or (var = expresión1) or … (var = expresiónN)

◎ solve( x^3 - 6*x² + 11*x -6 =0, x, '=' ) [↵] retorna
set[x = 1, x = 2, x = 3]

◉ list2exp( set[x = 1, x = 2, x = 3], x ) [↵] retorna
x=1 or x=2 or x=3

☆ Caso 1.1: Si el primer argumento u operando es un conjunto de soluciones de la forma
list[ expresión0, expresión1, … expresiónN ] retorna una expresión booleana de la forma
(var = expresión0) or (var = expresión1) or … (var= expresiónN)

◎ solve( x^3 - 6*x² + 11*x -6 =0, x ) [↵] retorna
list[1, 2, 3]
◉ list2exp( list[1, 2, 3], x ) [↵] retorna
x=1 or x=2 or x=3

☆ Caso 2: Si el primer argumento u operando es un conjunto de soluciones de la forma
set[
[ var1 = expresión0, var2= expresión1 ],
[ var1 = expresión3, var2= expresión4 ], …
[ var1 = expresión, var2= expresiónM ] ] retorna una expresión booleana de la forma
(var = expresión0) or (var = expresión1) or … (var= expresiónN)

◎ solve([x^2 + y^2 = 5, x^2 - y^2 = 1],[x,y],'=') [↵] retorna
set[ [x=√(3), y=√(2)],
[x=-√(3),y=√(2)],
[x=√(3),y=-√(2)],
[x=-√(3),y=-√(2)]]

◉ list2exp( set[ [x=√(3), y=√(2)], [x=-√(3),y=√(2)], [x=√(3),y=-√(2)], [x=-√(3),y=-√(2)]], [x, y] ) [↵] retorna
(x=√3 and y=√2) or (x=-√3 and y=√2) or (x=√3 and y=-√2) or (x=-√3 and y=-√2)

◎ solve( sin(t) = sin(2*t), t, '=' ) [↵] retorna
set[ t=(-pi/3), t=0, t=(pi/3), t=pi ]

◉ list2exp( set[ t=(-pi/3), t=0, t=(pi/3), t=pi ],t ) [↵] retorna
t=-pi/3 or t=0 or t=pi/3 or t=pi

● Orden relacionada: exp2list()

★ 6.2.5 Transformando una expresión booleana (conjunto solución) en una lista de soluciones: exp2list( expresion_booleana )

La orden exp2list() devuelve

☆ Caso 1: Si el argumento u operando es una expresión booleana de la forma
(var = expresión0) or (var = expresión1) or … (var = expresiónN) retorna una lista de soluciones de la forma
[ expresion0, expresion1, …, expresionN ]
Es decir, exp2list() elimina el lado izquierdo de la igualdad y las disyunciones (o) y finalmente las agrupa en un lista.

◉ exp2list( x=1 or x=2 or x=3 ) [↵] retorna [1,2,3]

☆ Caso 2: Si el argumento u operando es una expresión booleana de la forma
(var1 = expresión0 and var2= expresión1) or (var1 = expresión3 and var2= expresión4) or … (var1 = expresiónN and var2= expresiónM) retorna una lista de listas de soluciones de la forma
[ [expresion0, expresion1], [expresion2, expresion3], …, [expresionN, expresionM] ]
Es decir, exp2list() elimina el lado izquierdo de la igualdad, las conjunciones (y) y disyunciones (o) y finalmente las agrupa en un lista de listas.

◉ exp2list( (x=√3 and y=√2) or (x=-√3 and y=√2) or (x=√3 and y=-√2) or (x=-√3 and y=-√2) ) [↵] retorna
[ [√(3), √(2)],
[-√(3), √(2)],
[√(3), -√(2)],
[-(√(3)), -√(2)] ]

● Orden relacionada: list2exp()

☆Resumen de ejemplos capítulo 6.2.4/5
list[ exp2list( x=1 or x=2 or x=3 ),
exp2list( (x=√3 and y=√2) or (x=-√3 and y=√2) or (x=√3 and y=-√2) or (x=-√3 and y=-√2) ),
solve( x^3 - 6*x² + 11*x -6 =0, x, '=' ),
list2exp( set[x = 1, x = 2, x = 3], x ),
solve( x^3 - 6*x² + 11*x -6 =0, x ),
list2exp( list[1, 2, 3], x ),
solve([x^2 + y^2 = 5, x^2 - y^2 = 1],[x,y],'='),
list2exp( set[ [x=√(3), y=√(2)], [x=-√(3),y=√(2)], [x=√(3),y=-√(2)],[x=-√(3),y=-√(2)]], [x,y] ),
solve( sin(t) = sin(2*t), t, '=' ),
list2exp( set[ t=(-pi/3), t=0, t=(pi/3), t=pi ],t ) ]

☆ Prueba online/ test online
session Xcas, capítulos 6.2.4/5
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: SPN XCAS: MANUAL CALCULO SIMBÓLICO COMPUTACIONAL Y MATEMÁTICA CON XCAS - compsystems - 12-26-2018 04:16 PM



User(s) browsing this thread: 1 Guest(s)