Post Reply 
The lack of handling root functions in hp prime
12-30-2018, 12:27 PM
Post: #23
RE: The lack of handling root functions in hp prime
(12-22-2018 03:29 AM)yangyongkang Wrote:  As we all know, rational functions are better than transcendental functions, and polynomial is better than root in rational functions. Therefore, it is more difficult to deal with root simplification. Because of the large computational memory and fast speed on the simulator or XCAS, the problem of jamming or restarting rarely occurs, but the reason for the operation card being stuck or restarted often occurs on the hp prime physical machine. First come to the classic and simple representative example: simplify(sqrt(x+y+2*sqrt(x*y))|x>0, y>0), we want to get sqrt(x)+sqrt(y), But did not get it. Another example: simplify(λ*√((x-a)^2+y^2)+μ*√(x^2+(y-b)^2)|y=sqrt(r^2-x^2)), Simplify(∂(λ*sqrt(a^2-2*x*a+r^2)+μ*sqrt(b^2-2*sqrt(r^2-x^2)*b+r^2) ,x)),solve(∂(λ*sqrt(a^2-2*x*a+r^2)+μ*sqrt(b^2-2*sqrt(r^2-x^2)*b +r^2), x)=0, x),solve(x^2+(x-2)^2+2*y^2-sqrt(x^2+y^2)*sqrt((x-2)^2+y^2)=4,y),solve((2*√3*x^2-2*√3*x*x0+2*√3*y^2-√3*√(3*x^4-6*x0*x^3+6*x^2*y^2+(-2*√3*√(-3*x0^2+6*x0+1)+2*√3)*x^2*y+(6*x0+2-2*√(-3*x0^2+6*x0+1))*x^2-6*x0*x*y^2+3*y^4+(-2*√3*√(-3*x0^2+6*x0+1)+2*√3)*y^3+(6*x0+2-2*√(-3*x0^2+6*x0+1))*y^2)-2*y*√(-3*x0^2+6*x0+1)+2*y) = 0,x),simplify(((-(sqrt(3)))*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3))/6)-((sqrt((3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))-((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+6+48/(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3)))))/2)-(1/2),((-(sqrt(3)))*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3))/6)+((sqrt((3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))-((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+6+48/(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3)))))/2)-(1/2),(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3))/6)-((sqrt((3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))-((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+6-48/(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3)))))/2)-(1/2),(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3))/6)+((sqrt((3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))-((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+6-48/(sqrt(3)*sqrt(3*((-3*2^(1/3)/(2*(2*sqrt(13)+5))^(1/3))+((2*(2*sqrt(13)+5))^(1/3)/2^(1/3))+3)))))/2)-(1/2)),tcollect((-sqrt(-12*cos(2*x)+26*cos(3*x)+40*cos(4*x)+30*cos(5*x)+12*cos(6*x)+2*cos(7*x)-58*cos(x)-42*sin(2*x)-26*sin(3*x)-2*sin(4*x)+14*sin(5*x)+14*sin(6*x)+6*sin(7*x)+sin(8*x)-34*sin(x)-40)*y*sin(x)-sqrt(-12*cos(2*x)+26*cos(3*x)+40*cos(4*x)+30*cos(5*x)+12*cos(6*x)+2*cos(7*x)-58*cos(x)-42*sin(2*x)-26*sin(3*x)-2*sin(4*x)+14*sin(5*x)+14*sin(6*x)+6*sin(7*x)+sin(8*x)-34*sin(x)-40)*y+8*y*cos(x)^5-8*y*cos(x)^4*sin(x)-8*y*cos(x)^4-32*y*cos(x)^3*sin(x)-40*y*cos(x)^3-8*y*cos(x)^2*sin(x)-8*y*cos(x)^2+16*y*cos(x)*sin(x)+16*y*cos(x))/(16*cos(x)^5+16*cos(x)^4-32*cos(x)^3*sin(x)-32*cos(x)^3-32*cos(x)^2*sin(x)-32*cos(x)^2)), these are slow or stuck or restarted on the hp prime physical machine. The above is the problem I found.Off-topic, it is a Christmas in the West. As a Chinese, I hope everyone is happy Christmas. We are also doing activities here to celebrate the preparation of Christmas, although the relationship between China and the West is very delicate.sorry my poor english

Hi guy,

"The lack of handling root functions in hp prime" is definitely not a good title for this subject. the hp prime can handle root functions of course, but not all of them like every calculator or mathematics software.

A calculator or a software can't solve all subjects like a human can do, but it can help to do lengthy computations for example.

Everyone should be aware that calculators and apps are simply helps to solve problems.

Guy R. KOMAN, hp 50G, hp Prime Rev. C
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: The lack of handling root functions in hp prime - Komanguy - 12-30-2018 12:27 PM



User(s) browsing this thread: 20 Guest(s)