(12C Platinum) Cubic Equation
|
01-12-2019, 09:27 AM
(This post was last modified: 01-12-2019 09:55 AM by Gamo.)
Post: #1
|
|||
|
|||
(12C Platinum) Cubic Equation
ALG mode program solution of a Cubic Equation by Newton's Method.
f(x) = aX^3 + bX^2 + cX + d = 0 Successive approximations to a root are found by Xi+1 = 2aXi^3 + bXi^2 -d / 3aXi^2 + 2bXi + c Guess X0 ------------------------------------------------------ Remark: This program is use to solve for "REAL ROOT" ------------------------------------------------------- Procedure: f PRGM // Each new program or GTO 000 a [R/S] b [R/S] c [R/S] d [R/S] X0 [R/S] Display shown each successive approximation until root is found. If more than one Real Solutions enter another guess and [R/S] Maximum of 3 Real Root. ------------------------------------------------------- Example: x^3 - 4x^2 + 6x - 24 = 0 f [PRGM] or [GTO] 000 1 [R/S] 4 [CHS] [R/S] 6 [R/S] 24 [CHS] [R/S] 20 [R/S] // My starting guess Display successive approximation search and stop when root is found. Answer Display 4 X=4 --------------------------------------------- -2x^3 + 3x^2 + 4x - 5 = 0 f [PRGM] or [GTO] 000 2 [CHS] [R/S] 3 [R/S] 4 [R/S] 5 [CHS] [R/S] 10 [R/S] ...............display 1.8508 0 [R/S] .................display 1 5 [CHS] [R/S] ..........display -1.3508 ----------------------------------------------- Program: ALG Mode Code:
Gamo |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(12C Platinum) Cubic Equation - Gamo - 01-12-2019 09:27 AM
RE: (12C Platinum) Cubic Equation - Albert Chan - 01-12-2019, 01:39 PM
RE: (12C Platinum) Cubic Equation - Albert Chan - 02-04-2019, 04:10 PM
RE: (12C Platinum) Cubic Equation - Thomas Klemm - 02-04-2019, 08:13 PM
RE: (12C Platinum) Cubic Equation - Albert Chan - 02-05-2019, 10:24 PM
RE: (12C Platinum) Cubic Equation - Gamo - 02-05-2019, 04:24 AM
RE: (12C Platinum) Cubic Equation - Thomas Klemm - 02-05-2019, 06:09 AM
RE: (12C Platinum) Cubic Equation - Thomas Klemm - 02-05-2019, 06:20 AM
|
User(s) browsing this thread: 1 Guest(s)