Post Reply 
[VA] SRC#003- New Year 2019 Special
01-18-2019, 08:28 PM
Post: #11
RE: [VA] SRC#003- New Year 2019 Special
Looking at the eigenvalues of the matrix \(M\):

M
EGVL

[ (175.524449043,0) (-83.049835541,127.396573277) (-83.049835541,127.396573277) ]

respectively rather at their absolute values:

[ 175.524449043, 152.076171921, 152.076171921 ]

We can estimate the amount of iterations \(n\) needed for a 10-digit calculator like the HP-11C to return the exact value as:

\(\left (\frac{152.076171921}{175.524449043} \right )^n = 10^{-10}\)

This leads to:

\(n=\frac{-10}{\log_{10} \left (\frac{152.076171921}{175.524449043} \right )}\approx 160.5744\)

Or then for a 12-digit calculator like the HP-48GX to:

\(n=\frac{-12}{\log_{10} \left (\frac{152.076171921}{175.524449043} \right )}\approx 192.6892\)

(01-18-2019 07:15 PM)DavidM Wrote:  2019/200 completed in about 476 seconds on my 11C.

Using 160 instead of 200 would take about 380 seconds.

Cheers
Thomas
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: [VA] SRC#003- New Year 2019 Special - Thomas Klemm - 01-18-2019 08:28 PM



User(s) browsing this thread: 2 Guest(s)