Loading [MathJax]/extensions/Safe.js


Post Reply 
(12C Platinum) Sums of Powers of N numbers
01-22-2019, 11:57 PM
Post: #4
RE: (12C Platinum) Sums of Powers of N numbers
We can use the Net Present Value (NPV) to evaluate a polynomial:

\(NPV = CF_0 + \frac{CF_1}{1+r} + \frac{CF_2}{(1+r)^2} + \frac{CF_3}{(1+r)^3} + \cdots + \frac{CF_n}{(1+r)^n}\)

Use the ∆% function to transform \(x=\frac{1}{1+r}\) to \(i=100r\).

This leads to the following generic program to evaluate a polynomial:
Code:
01-       1    1
02-      24    ∆%
03-   44 12    STO i
04-   42 13    NPV

1. Arithmetic Series

\(\frac{x(x+1)}{2}=\frac{x^2}{2}+\frac{x}{2}\)

0
CF0
2 1/x
CFi
CFi


Examples:

1 R/S
1.0000

2 R/S
3.0000

3 R/S
6.0000

10 R/S
55.0000


2. Sum of the consecutive Squares

\(\frac{x(x+1)(2x+1)}{6}=\frac{x^3}{3}+\frac{x^2}{2}+\frac{x}{6}\)

0
CF0
6 1/x
CFi
2 1/x
CFi
3 1/x
CFi


Examples:

1 R/S
1.0000

2 R/S
5.0000

3 R/S
14.0000

10 R/S
385.0000


3. Sum of the consecutive Cubes

\(\frac{x^2(x+1)^2}{4}=\frac{x^4}{4}+\frac{x^3}{2}+\frac{x^2}{4}\)

0
CF0
CFi
4 1/x
CFi
2 1/x
CFi
x<>y
CFi


Examples:

1 R/S
1.0000

2 R/S
9.0000

3 R/S
36.0000

10 R/S
3025.0000


Disclaimer: I don't have an HP-12C Platinum.
But this works with the regular HP-12C.

Kind regards
Thomas

PS: Cf. HP-12C’s Serendipitous Solver
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: (12C Platinum) Sums of Powers of N numbers - Thomas Klemm - 01-22-2019 11:57 PM



User(s) browsing this thread: 1 Guest(s)