Find distance between intersections of circle and line?
|
02-08-2019, 12:33 AM
(This post was last modified: 02-08-2019 02:31 PM by Albert Chan.)
Post: #5
|
|||
|
|||
RE: Find distance between intersections of circle and line?
Another way is to find angles of intersection.
Move the circle center to (0,0), line -> y' = 2(x' - 1) + 3 = 2x' + 1 Scale down to create a unit circle, line -> y'' = 2 x'' + 1√55 -> sin(z) = 2 cos(z) + 1√55 Use half angle formulas, t=tan(z/2), and let k=1√55: 2t/(1+t²) = 2 * (1-t²)/(1+t²) + k 2t = 2 - 2t² + k + kt² (k-2) t² - 2t + (k+2) = 0 -> t = 0.6605, -1.7328 -> z = 66.89°, 239.98° Distance between intersecting point = 2 r sin(Δz/2) = 2 √(55) sin(173.09°/2) ~ 14.8 Intersecting hi point = (√(55) cos(66.89°) - 1 , √(55) sin(66.89°)) ~ (1.91, 6.82) Intersecting lo point = (√(55)cos(239.98°) - 1, √(55)sin(239.98°)) ~ (-4.71, -6.42) Edit: this may be more accurate: |sin(Δz/2)| = |Δt| / √((1+t1²)(1+t2²)) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 4 Guest(s)