Post Reply 
(12C) log1p function
02-10-2019, 09:08 AM (This post was last modified: 04-19-2022 01:27 AM by Albert Chan.)
Post: #12
RE: (12C) log1p function
Dieter's asinh formula look very nice: log1p(x) = asinh ( (x²+2x)/(2x+2) ) = asinh(x - x/(2+2/x))

We can create "half angle" version, using symmetrical relation: atanh(sin(z)) = asinh(tan(z))

log1p(x) = 2 atanh( x/(x+2) ) = 2 asinh( x/ √((x+2)² - x²) )

log1p(x) = 2 asinh ( x/√(4x+4) )

Comment: it may be easier to derive relation with Arc SOHCAHTOA method, for hyperbolics

atanhq(x²/(x+2)²)      // TOA, O=x², A=(x+2)²
= asinhq(x²/(4x+4))   // SOH, H = A-O = 4x+4
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(12C) log1p function - Albert Chan - 01-31-2019, 01:10 AM
RE: (12C) log1p function - Thomas Klemm - 01-31-2019, 04:08 AM
RE: (12C) log1p function - Paul Dale - 01-31-2019, 05:48 AM
RE: (12C) log1p function - Dieter - 01-31-2019, 08:45 AM
RE: (12C) log1p function - Albert Chan - 01-31-2019, 09:42 AM
RE: (12C) log1p function - Dieter - 01-31-2019, 09:43 PM
RE: (12C) log1p function - Albert Chan - 01-31-2019, 10:55 PM
RE: (12C) log1p function - Werner - 02-01-2019, 07:07 AM
RE: (12C) log1p function - Albert Chan - 02-01-2019, 12:30 PM
RE: (12C) log1p function - Thomas Klemm - 02-02-2019, 12:28 PM
RE: (12C) log1p function - Albert Chan - 02-10-2019 09:08 AM
RE: (12C) log1p function - Albert Chan - 02-10-2019, 02:19 PM



User(s) browsing this thread: 2 Guest(s)