[VA] SRC#004- Fun with Sexagesimal Trigs
|
02-12-2019, 12:14 PM
Post: #8
|
|||
|
|||
RE: [VA] SRC#004- Fun with Sexagesimal Trigs
Prove A = 2^29 = 536870912:
Checking the edges, using shorthand t# = tan(#°): tan(A°+B°) = (tA + tB) / (1 - tA tB) (t60 + tA) (t60 + tB), where A+B=30° = t60^2 + t60*(tA + tB) + tA tB = t60^2 + t60*t30*(1 - tA tB) + tA tB = 3 + 1 - tA tB + tA tB = 2^2 t15 = tan(45° - 30°) = (t45 - t30) / (1 + t45 t30) = (1 - 1/√3) / (1 + 1/√3) = (√3 - 1) / (√3 + 1) = (√3 - 1)^2 / (3 - 1) = (3 + 1 - 2*√3) / 2 -> t15 = 2 - √3 -> center = t60 + t15 = 2 14 pairs of edges and 1 center, all can considered value of 2, thus A = 2^29 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)