Post Reply 
(34C) Musical Notes (Original by J.M. Bowsher)
02-13-2019, 10:28 PM
Post: #9
RE: (34C) Musical Notes (Original by J.M. Bowsher)
(02-11-2019 10:26 PM)Thomas Klemm Wrote:  Still I don't grok the benefit of doing it.

For those of you who want to give the HP-29C a try here's the original program:

Data
Code:
00: 1200
01: 1731.234049
02: 15.88609958
03: 50
04: 100
05: 11.9495
06: 16264
07: 10
08: 0.0005
09: 1e-15

Program
Code:
01: 15 13 00    : LBL 0
02: 74          : R/S
03: 24 09       : RCL 9
04: 51          : +
05: 23 .1       : STO .1
06: 15 64       : ABS
07: 23 .2       : STO .2
08: 24 06       : RCL 6
09: 21          : x<>y
10: 14 51       : x>y
11: 13 22       : GTO i
12: 24 05       : RCL 5
13: 21          : x<>y
14: 14 51       : x>y
15: 13 01       : GTO 1
16: 14 11 01    : FIX 1
17: 14 62       : INT
18: 24 04       : RCL 4
19: 61          : ×
20: 23 .0       : STO .0
21: 24 .2       : RCL .2
22: 15 62       : FRAC
23: 24 07       : RCL 7
24: 61          : ×
25: 31          : ENTER
26: 14 62       : INT
27: 24 00       : RCL 0
28: 61          : ×
29: 23 51 .0    : STO + .0
30: 21          : x<>y
31: 15 62       : FRAC
32: 24 04       : RCL 4
33: 61          : ×
34: 24 03       : RCL 3
35: 23 51 .0    : STO + .0
36: 21          : x<>y
37: 14 51       : x>y
38: 13 22       : GTO i
39: 24 .1       : RCL .1
40: 24 .2       : RCL .2
41: 71          : ÷
42: 61          : ×
43: 23 51 .0    : STO + .0
44: 24 .0       : RCL .0
45: 24 01       : RCL 1
46: 71          : ÷
47: 15 42       : eˣ
48: 24 02       : RCL 2
49: 61          : ×
50: 13 00       : GTO 0
51: 15 13 01    : LBL 1
52: 14 11 03    : FIX 3
53: 24 .1       : RCL .1
54: 24 02       : RCL 2
55: 71          : ÷
56: 14 42       : LN
57: 15 41       : x<0
58: 13 22       : GTO i
59: 24 01       : RCL 1
60: 61          : ×
61: 24 00       : RCL 0
62: 71          : ÷
63: 31          : ENTER
64: 14 62       : INT
65: 24 07       : RCL 7
66: 71          : ÷
67: 23 .0       : STO .0
68: 21          : x<>y
69: 15 62       : FRAC
70: 24 00       : RCL 0
71: 61          : ×
72: 24 04       : RCL 4
73: 71          : ÷
74: 31          : ENTER
75: 14 62       : INT
76: 23 51 .0    : STO + .0
77: 21          : x<>y
78: 15 62       : FRAC
79: 24 04       : RCL 4
80: 61          : ×
81: 24 03       : RCL 3
82: 41          : –
83: 33          : EEX
84: 03          : 3
85: 71          : ÷
86: 31          : ENTER
87: 15 64       : ABS
88: 23 51 .0    : STO + .0
89: 71          : ÷
90: 24 .0       : RCL .0
91: 24 08       : RCL 8
92: 14 51       : x>y
93: 13 02       : GTO 2
94: 22          : R↓
95: 61          : ×
96: 13 00       : GTO 0
97: 15 13 02    : LBL 2
98: 34          : CLx

Examples
Code:
   440                            9.400   (A4 exactly)
   441                            9.404   (A4 + 4 ¢)
   439                          – 9.404   (A4 – 4 ¢)
   123                          –11.207   (B2 – 7 ¢)
    50                            7.135   (G1 + 35 ¢)
    60                          –11.149   (B1 – 49 ¢)
 0.400   (C4 exactly)             261.6
10.400   (Bb4 exactly)            466.2
–4.321   (E3 – 21 ¢)              162.8
 4.321   (E3 + 21 ¢)              166.8
14.0     (?)                    Error
 0.451   (C4 + 51 ¢)            Error

Thanks to the examples I understand now that the difference in cents to a pure note must be between –50¢ and 50¢.
A negative value is indicated by a negative sign.

Though I can see that this is a reasonable convention I'm still not convinced to enter the data in this peculiar way.
Furthermore I get -9.400 for the 440Hz of the first example.

Quote:We are left with the problem of displaying the number of cents by which the note is sharper or flatter than the nominal note of the scale. It would be most elegant to use the exponential part of the display to carry this information. The author has studied this problem but has concluded, regretfully, that this is impossible to execute on a reasonably simple calculator, as a great number of steps are required to handle the computations. Thus we are forced to use the next two digits of the display to handle the number of cents.

The real problem is to distinguish for instance B0 + 23¢ from C#1 + 24¢.
Both entries 11.0e23 and 1.1e24 lead to the same number:

1.1        24


Cheers
Thomas
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: (34C) Musical Notes (Original by J.M. Bowsher) - Thomas Klemm - 02-13-2019 10:28 PM



User(s) browsing this thread: 1 Guest(s)