The following warnings occurred:
Warning [2] count(): Parameter must be an array or an object that implements Countable - Line: 795 - File: showthread.php PHP 7.4.33 (FreeBSD)
File Line Function
/showthread.php 795 errorHandler->error





Post Reply 
Analytic geometry
02-18-2019, 09:27 AM (This post was last modified: 02-18-2019 12:58 PM by yangyongkang.)
Post: #1
Analytic geometry
Hello everyone. I recently encountered a planar geometry problem, I tried to solve it with algebraic methods.This requires me to solve a series of equations.

Code:
f := proc (alpha) options operator, arrow, function_assign; x*cos(alpha)+y*sin(alpha) end proc;l1:=solve([f(alpha) = 1, f(beta) = 1], [x, y]);l2:=solve([f(alpha) = 1, f(gamma) = 1], [x, y]);l3:=solve([f(beta) = 1, f(gamma) = 1], [x, y]);solve([(l1(1,1)-l2(1,1))^2+(l1(1,2)-l2(1,2))^2=(l1(1,1)-l3(1,1))^2+(l1(1,2)-l3(1,2))^2,(l1(1,1)-l2(1,1))^2+(l1(1,2)-l2(1,2))^2=(l3(1,1)-l2(1,1))^2+(l3(1,2)-l2(1,2))^2],[beta, alpha])


XCAS can't solve it
Wolfram Mathematica 11.3 can't solve it


Wolfram Mathematic 11.3 code
Code:
f[m_] := x*Cos[m] + y*Sin[m]; l1 := {x, y} /. 
  Solve[f[t1] == 1 && f[t2] == 1, {x, y}]; l2 := {x, y} /. 
  Solve[f[t1] == 1 && f[t3] == 1, {x, y}]; l3 := {x, y} /. 
  Solve[f[t2] == 1 && f[t3] == 1, {x, 
    y}]; Solve[(l1[[1, 1]] - l2[[1, 1]])^2 + (l1[[1, 2]] - 
       l2[[1, 2]])^2 == (l1[[1, 1]] - l3[[1, 1]])^2 + (l1[[1, 2]] - 
       l3[[1, 2]])^2 && (l3[[1, 1]] - l2[[1, 1]])^2 + (l3[[1, 2]] - 
       l2[[1, 2]])^2 == (l1[[1, 1]] - l2[[1, 1]])^2 + (l1[[1, 2]] - 
       l2[[1, 2]])^2, {t2, t1}]

But Maple2018 seems to solve
Code:
f := proc (alpha) options operator, arrow, function_assign; x*cos(alpha)+y*sin(alpha) end proc; l1 := subs(solve([f(alpha) = 1, f(beta) = 1], [x, y])[1], [x, y]); l2 := subs(solve([f(alpha) = 1, f(gamma) = 1], [x, y])[1], [x, y]); l3 := subs(solve([f(beta) = 1, f(gamma) = 1], [x, y])[1], [x, y]); allvalues(solve([(l1[1]-l2[1])^2+(l1[2]-l2[2])^2 = (l1[1]-l3[1])^2+(l1[2]-l3[2])^2, (l1[1]-l2[1])^2+(l1[2]-l2[2])^2 = (l2[1]-l3[1])^2+(l2[2]-l3[2])^2], [beta, alpha]))
Its geometric meaning is an equilateral triangle surrounded by three tangents of a circle.
The equation of the circle is
Code:
x^2+y^2=1

Randomly take three parameters and draw this image
Code:
plotimplicit(x*cos(1)+y*sin(1)=1);plotimplicit(x*cos(-8)+y*sin(-8)=1);plotimplicit(x*cos(3)+y*sin(3)=1);plotimplicit(x^2+y^2=1)

Sure enough, the three tangent lines

Sorry my poor english


Attached File(s) Thumbnail(s)
   

study hard, improve every day
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Analytic geometry - yangyongkang - 02-18-2019 09:27 AM
RE: Analytic geometry - yangyongkang - 02-18-2019, 12:09 PM
RE: Analytic geometry - Albert Chan - 02-18-2019, 08:48 PM
RE: Analytic geometry - Albert Chan - 02-18-2019, 03:16 PM
RE: Analytic geometry - Albert Chan - 02-18-2019, 05:51 PM
RE: Analytic geometry - Albert Chan - 02-19-2019, 10:23 PM
RE: Analytic geometry - Albert Chan - 02-20-2019, 09:33 PM



User(s) browsing this thread: 2 Guest(s)