Post Reply 
(12C) Signum Function
03-03-2019, 04:59 PM
Post: #12
RE: (12C) Signum Function
(03-03-2019 01:15 PM)Albert Chan Wrote:  If a number x had an uncertainty factor 1+ε, (x·(1+ε))² = x²·(1+2ε+ε²) ≈ x²·(1+2ε)

There's no "uncertainty" when it comes to rounding numbers.
Though this may be related it doesn't explain what's going on.

Cheers
Thomas
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(12C) Signum Function - Gamo - 03-01-2019, 06:29 AM
RE: (12C) Signum Function - Dieter - 03-04-2019, 10:57 AM
RE: (12C) Signum Function - Gamo - 03-02-2019, 05:47 AM
RE: (12C) Signum Function - Dieter - 03-02-2019, 05:22 PM
RE: (12C) Signum Function - rprosperi - 03-02-2019, 08:57 PM
RE: (12C) Signum Function - Gamo - 03-03-2019, 02:31 AM
RE: (12C) Signum Function - Dieter - 03-03-2019, 12:38 PM
RE: (12C) Signum Function - Thomas Klemm - 03-03-2019, 08:17 AM
RE: (12C) Signum Function - Albert Chan - 03-03-2019, 01:15 PM
RE: (12C) Signum Function - Gamo - 03-03-2019, 02:39 PM
RE: (12C) Signum Function - rprosperi - 03-03-2019, 03:34 PM
RE: (12C) Signum Function - Dieter - 03-03-2019, 05:51 PM
RE: (12C) Signum Function - Dieter - 03-04-2019, 10:49 AM
RE: (12C) Signum Function - rprosperi - 03-03-2019, 07:59 PM
RE: (12C) Signum Function - Thomas Klemm - 03-03-2019 04:59 PM
RE: (12C) Signum Function - Albert Chan - 03-03-2019, 07:49 PM
RE: (12C) Signum Function - Thomas Klemm - 03-03-2019, 11:27 PM
RE: (12C) Signum Function - Albert Chan - 03-04-2019, 02:02 AM
RE: (12C) Signum Function - Gamo - 03-04-2019, 04:58 AM



User(s) browsing this thread: 2 Guest(s)