Solving a Single Congruence Equation
|
03-12-2019, 03:46 AM
(This post was last modified: 10-02-2022 03:12 PM by Albert Chan.)
Post: #15
|
|||
|
|||
RE: Solving a Single Congruence Equation
(03-10-2019 12:45 AM)Albert Chan Wrote: If N is large, we can solve another, with smaller modulo: Example, solve 1223334444 x ≡ 1 (mod 9988776655) List Euclid GCD intermediates, build inverses in reverse order. 9988776655 → 3171632349 1223334444 → -388432661 202101103 → 64171061 10727826 → -3406295 9000235 → 2857751 1727591 → -548544 362280 → 115031 278471 → -88420 83809 → 26611 27044 → -8587 2677 → 850 274 → -87 211 → -floor(-20/63 * 211) = 67 63 → -floor(7/22 * 63) = -20 22 → -floor(-6/19 * 22) = 7 19 → -floor(1/3 * 19) = -6 3 → 1 ; 1-1 ≡ 1 (mod 3) 1 = gcd 9988776655 * -388432661 + 1223334444 * 3171632349 = 1 → 1/9988776655 ≡ -388432661 (mod 1223334444) → 1/1223334444 ≡ 3171632349 (mod 9988776655) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 5 Guest(s)