Solving a Single Congruence Equation
|
03-12-2019, 09:03 PM
(This post was last modified: 10-02-2022 02:21 PM by Albert Chan.)
Post: #16
|
|||
|
|||
RE: Solving a Single Congruence Equation
There is no need to walk the whole chain of inverses.
For x ≡ 1/1223334444 (mod 9988776655), gcd intermediates are even, final inverse is positive. We can guess where it should end up. 1/3 ≡ -6 (mod 19) → x ≈ |floor(−6/19 * 9988776655)| = 3154350523 1/19 ≡ +7 (mod 22) → x ≈ |floor(+7/22 * 9988776655)| = 3178247117 x is between above limits. We can extrapolation in smaller steps, to scale to correct inverses. \(\displaystyle \left|{6 \over 19} - {7 \over 22}\right| = {1 \over 19×22} = {1 \over 418} < {1 \over 274} \) 1/211 ≡ (-1)4 floor(-6/19 * 274) ≡ -87 (mod 274) Redo previous example, skipping unneeded calculations. 9988776655 → (-1)^6 floor(115031/362280 * 9988776655) = 3171632349 1223334444 202101103 10727826 9000235 1727591 362280 → (-1)^5 floor(-87/274 * 362280) = 115031 ; 362280*1727591 ≈ 626e9 278471 83809 27044 2677 274 → (-1)^3 floor(7/22 * 274) = -87 ; 274*2677=733498 211 63 22 → (-1)^2 floor(1/3 * 22) = 7 ; 22*63=1386 19 3 → 1 ; 3*19=57 1 = gcd 4th scalings gives: 1/1223334444 ≡ 3171632349 (mod 9988776655) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)