(17BII and 27S) Quadratic Equation
|
03-26-2019, 04:05 PM
Post: #1
|
|||
|
|||
(17BII and 27S) Quadratic Equation
The following solver equations solve the quadratic equation
A*x^2 + B*x + C = 0 by the famous Quadratic Formula x = (-B ± √(B^2 - 4*A*C) ) / (2*A) Define D as the discriminant: D = B^2 - 4*A*C If A, B, and C are real numbers and: D<0, the roots are complex conjugates D≥0, the roots are real roots Quadratic Equation: Real Roots Only Code: QUAD:X=INV(2*A)*(-B+SQRT(B^2-4*A*C)*SGN(R#)) Input Variables: A: coefficient of X^2 B: coefficient of X C: constant R#: -1 or 1 Output Varibles: X: root Example: 2X^2 + 3X - 5 = 0 Input: A: 2 B: 3 C: -5 R#: 1 (or any positive number) Output: X = 1 Input: R#: -1 Output: X = -2.5 Quadratic Equation: Real or Complex Roots (Let (L) and Get (G) functions required) Code: QUAD:0*(A+B+C+L(D:B^2-4*A*C)+L(E:2*A)) Input Variables: A: coefficient of X^2 B: coefficient of X C: constant Output Variables: D: Discriminant If D<0: X1: real part, X2: imaginary part If D≥0: X1: real root 1, X2: real root 2 Example 1: -3*X^2 + 8*X - 1= 0 Input: A: -3 B: 8 C: -1 Output: D = 52 X1 = 0.1315 X2 = 2.5352 Roots: x = 0.1315, x = 2.5352 Example 2: 3*X^2 + 5*X + 3 = 0 Input: A: 3 B: 5 C: 3 Output: D = -11 X1 = -0.8333 X2 = 0.5528 Roots: x = -0.8333 ± 0.5528i Link: https://edspi31415.blogspot.com/2019/03/...rmula.html |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(17BII and 27S) Quadratic Equation - Eddie W. Shore - 03-26-2019 04:05 PM
|
User(s) browsing this thread: 2 Guest(s)