Post Reply 
Multivariable Taylor series
03-31-2019, 11:46 PM
Post: #5
RE: Multivariable Taylor series
So these are the functions I was able to come up with:

Code:
maclaurin_mv(expr_rep,vars,order):=(series(expr_rep(vars = (reserved*vars)),reserved = 0,order,polynom))(reserved = 1)
taylor_mv(expr_rep,vars,order,center_rep):=(maclaurin_mv(expr_rep(vars = (vars+center_rep)),vars,order)))(vars = (vars-center_rep))

The taylor version simply moves the origin of the function to ``center_rep``, expands the maclaurin series and then offsets the function back to its origin.

If you have any comments on my solution, like how I could improve it, please do post them. I'm open to criticism.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Multivariable Taylor series - fakuivan - 03-31-2019, 11:01 AM
RE: Multivariable Taylor series - parisse - 03-31-2019, 02:03 PM
RE: Multivariable Taylor series - fakuivan - 03-31-2019, 03:44 PM
RE: Multivariable Taylor series - parisse - 03-31-2019, 06:47 PM
RE: Multivariable Taylor series - fakuivan - 03-31-2019 11:46 PM
RE: Multivariable Taylor series - fakuivan - 04-02-2019, 08:04 PM
RE: Multivariable Taylor series - parisse - 04-03-2019, 06:45 AM
RE: Multivariable Taylor series - parisse - 04-04-2019, 05:55 PM
RE: Multivariable Taylor series - fakuivan - 04-05-2019, 11:09 AM
RE: Multivariable Taylor series - chromos - 04-05-2019, 12:19 PM
RE: Multivariable Taylor series - parisse - 04-06-2019, 05:24 AM



User(s) browsing this thread: 1 Guest(s)