integrales de funciones trigonometricas hiperbolicas
|
04-20-2019, 04:21 AM
(This post was last modified: 04-20-2019 04:24 AM by Wes Loewer.)
Post: #6
|
|||
|
|||
RE: integrales de funciones trigonometricas hiperbolicas
If I were doing this integral by hand, I would do the following:
∫(1-tanh(x)^2) dx = ∫sech(x)^2 dx = tanh(x)+C The Prime CAS gives the result as -2/((e^x)^2+1)+C At first glance, these might look different, but since tanh(x) - 1 = -2/((e^x)^2+1), then the two expressions differ only by a constant. This means that the two expressions are both correct, they just have different integration constants. If you look at other CAS's, you'll see different but equivalent results. Maxima: 2/(e^(-2*x)+1) Nspire: −2/(e^(2*x)+1) WolframAlpha: tanh(x) When my students say that they got a different answer than the textbook, I encourage them to graph both results. If they get the same graph but shifted up or down, then they can be reasonable certain that their answers are equivalent. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
integrales de funciones trigonometricas hiperbolicas - eduardo_MO0@hotmail.com - 04-16-2019, 09:13 PM
RE: integrales de funciones trigonometricas hiperbolicas - Wes Loewer - 04-17-2019, 04:18 AM
RE: integrales de funciones trigonometricas hiperbolicas - Tim Wessman - 04-17-2019, 04:28 AM
RE: integrales de funciones trigonometricas hiperbolicas - Aries - 04-17-2019, 06:17 AM
RE: integrales de funciones trigonometricas hiperbolicas - Carlos295pz - 04-20-2019, 02:02 AM
RE: integrales de funciones trigonometricas hiperbolicas - Wes Loewer - 04-20-2019 04:21 AM
RE: integrales de funciones trigonometricas hiperbolicas - Wes Loewer - 04-22-2019, 06:43 AM
|
User(s) browsing this thread: 2 Guest(s)