integrales de funciones trigonometricas hiperbolicas
|
04-22-2019, 06:43 AM
Post: #7
|
|||
|
|||
RE: integrales de funciones trigonometricas hiperbolicas
I was asked privately about the integral ∫tanh(x) dx
The Prime gives ∫(tanh(x),x) --> ln((e^x)^2+1)-x which is correct. By hand I would have done the following: ∫tanh(x) dx = ∫sinh(x)/cosh(x) dx = ln(cosh(x))+C but this can be rewritten as = ln((e^x+e^-x)/2) + C = ln((e^(2x)+1)/(2e^x)) + C = ln(e^2x)+1) - ln(2e^x) + C = ln(e^2x)+1) - ln(2) - ln(e^x) + C = ln(e^2x)+1) - x + (C-ln(2)) = ln(e^2x)+1) - x + D Once again, the correct answers can be rewritten such that they differ by only a constant. I've learned over the years that whenever a CAS's antiderivative looks different than mine, it's usually that they differ by a constant, or my antiderivative is wrong. :-) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
integrales de funciones trigonometricas hiperbolicas - eduardo_MO0@hotmail.com - 04-16-2019, 09:13 PM
RE: integrales de funciones trigonometricas hiperbolicas - Wes Loewer - 04-17-2019, 04:18 AM
RE: integrales de funciones trigonometricas hiperbolicas - Tim Wessman - 04-17-2019, 04:28 AM
RE: integrales de funciones trigonometricas hiperbolicas - Aries - 04-17-2019, 06:17 AM
RE: integrales de funciones trigonometricas hiperbolicas - Carlos295pz - 04-20-2019, 02:02 AM
RE: integrales de funciones trigonometricas hiperbolicas - Wes Loewer - 04-20-2019, 04:21 AM
RE: integrales de funciones trigonometricas hiperbolicas - Wes Loewer - 04-22-2019 06:43 AM
|
User(s) browsing this thread: 2 Guest(s)