(34S) The Complex Transformations Between ...
|
05-20-2014, 09:57 AM
(This post was last modified: 06-15-2017 01:22 PM by Gene.)
Post: #1
|
|||
|
|||
(34S) The Complex Transformations Between ...
For an introduction see: Calculations With Complex Matrices
These transformations convert between the \(Z^P\) representation of an m×n complex matrix and a 2m×2n partitioned matrix of the following form: \[Z = \begin{bmatrix}X & -Y \\ Y & X\end{bmatrix}\] The matrix \(\tilde{Z}\) created by the MPZ transformation has twice as many elements as \(Z^P\). For example, the matrices below show how \(\tilde{Z}\) is related to \(Z^P\). \[Z^P = \begin{bmatrix}1 & -6 \\ -4 & 5\end{bmatrix}\] \[\tilde{Z} = \begin{bmatrix}1 & -6 & 4 & -5 \\ -4 & 5 & 1 & -6\end{bmatrix}\] The transformations that convert the representation of a complex matrix between \(Z^P\) and \(\tilde{Z}\) are shown in the following table. \[\begin{matrix} Pressing & Transforms & Into \\ MPZ & Z^P & \tilde{Z} \\ MZP & \tilde{Z} & Z^P \end{matrix}\] HP-15C Owner's Handbook Section 12: Calculating With Matrices Calculating With Complex Matrices Inverting a Complex Matrix Example: (pp. 165) \[Z = \begin{bmatrix} 4+3i & 7-2i \\ 1+5i & 3+8i \end{bmatrix}\] Enter matrix \(Z^C\): 7.0204 XEQ 'MED' 4 R/S ↓ 3 R/S ↓ 7 R/S (…) ↓ 8 R/S \[Z^C = \begin{bmatrix}4 & 3 & 7 & -2 \\ 1 & 5 & 3 & 8\end{bmatrix}\] Transform matrix \(Z^C\) to \(Z^P\): 7.0204 XEQ'MCP' 7.0402 \[Z^P = \begin{bmatrix}4 & 7 \\ 1 & 3 \\ 3 & -2 \\ 5 & 8\end{bmatrix}\] Transform matrix \(Z^P\) to \(\tilde{Z}\): 7.0402 XEQ'MPZ' 7.0404 \[\tilde{Z}=\begin{bmatrix} 4 & 7 & -3 & 2 \\ 1 & 3 & -5 & -8 \\ 3 & -2 & 4 & 7 \\ 5 & 8 & 1 & 3 \end{bmatrix}\] Calculate the inverse: 7.0404 MATRIX:M-1 7.0404 \[\bar{Z}=\tilde{Z}^{-1}=\begin{bmatrix} -0.0254 & 0.2420 & 0.2829 & 0.0022 \\ -0.0122 & -0.1017 & -0.1691 & 0.1315 \\ -0.2829 & -0.0022 & -0.0254 & 0.2420 \\ 0.1691 & -0.1315 & -0.0122 & -0.1017 \end{bmatrix}\] Transform matrix \(\bar{Z}\) to \(\bar{Z}^P\): 7.0404 XEQ'MZP' 7.0402 \[\bar{Z}^P=\begin{bmatrix} -0.0254 & 0.2420 \\ -0.0122 & -0.1017 \\ -0.2829 & -0.0022 \\ 0.1691 & -0.1315 \end{bmatrix}\] Transform matrix \(\bar{Z}^P\) to \(\bar{Z}^C\): 7.0402 XEQ'MPC' 7.0204 \[\bar{Z}^C=\begin{bmatrix} -0.0254 & -0.2829 & 0.2420 & -0.0022 \\ -0.0122 & 0.1691 & -0.1017 & -0.1315 \end{bmatrix}\] \[Z^{-1}=\begin{bmatrix} -0.0254 - 0.2829i & 0.2420 - 0.0022i \\ -0.0122 + 0.1691i & -0.1017 - 0.1315i \end{bmatrix}\] Code: LBL'MPZ' Code: LBL'MZP' Code: LBL'MPC' Code: LBL'MCP' |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(34S) The Complex Transformations Between ... - Thomas Klemm - 05-20-2014 09:57 AM
|
User(s) browsing this thread: 1 Guest(s)