(12C Platinum) Parabola - arc length
|
07-02-2019, 09:18 AM
Post: #5
|
|||
|
|||
RE: (12C Platinum) Parabola - arc length
(06-29-2019 10:22 AM)Gamo Wrote: The Arc Length of a Parabola calculator compute the arc length (S) The formula given in your image can be optimised, unless LN is a natural log. It includes two instances of LN: LN4 and LN(). Where N = H/L Thus LN 4 can be optimised to LH/L = H, and similarly for LN() if that is an implied multiply and not a natural logarithm. Stephen Lewkowicz (G1CMZ) https://my.numworks.com/python/steveg1cmz |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(12C Platinum) Parabola - arc length - Gamo - 06-29-2019, 10:22 AM
RE: (12C Platinum) Parabola - arc length - Domino - 06-30-2019, 08:33 AM
RE: (12C Platinum) Parabola - arc length - Albert Chan - 07-11-2019, 04:19 PM
RE: (12C Platinum) Parabola - arc length - Gamo - 06-30-2019, 11:35 AM
RE: (12C Platinum) Parabola - arc length - Gamo - 07-01-2019, 09:12 AM
RE: (12C Platinum) Parabola - arc length - StephenG1CMZ - 07-02-2019 09:18 AM
RE: (12C Platinum) Parabola - arc length - Domino - 07-03-2019, 07:35 AM
RE: (12C Platinum) Parabola - arc length - Gamo - 07-03-2019, 08:14 AM
RE: (12C Platinum) Parabola - arc length - PedroLeiva - 07-03-2019, 10:07 PM
|
User(s) browsing this thread: 2 Guest(s)