Post Reply 
Pi Approximation Day
07-23-2019, 06:18 PM (This post was last modified: 07-23-2019 06:20 PM by Gerson W. Barbosa.)
Post: #15
RE: Pi Approximation Day
(07-23-2019 05:31 PM)BartDB Wrote:  FDIST

FDISTRIB... That’s what I was looking for. It’s available on the 49G as well. Thanks!

Alternatively,

'22/7-∫(0,1,X^4*(1-X)^4/(1+X^2),X)'

EVAL

—> 'π'


That is,

π = 22/7 - ∫(0,1,X^4*(1-X)^4/(1+X^2),X)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Pi Approximation Day - Gerson W. Barbosa - 07-22-2019, 03:41 AM
RE: Pi Approximation Day - ggauny@live.fr - 07-22-2019, 10:01 AM
RE: Pi Approximation Day - burkhard - 07-22-2019, 01:02 PM
RE: Pi Approximation Day - rprosperi - 07-22-2019, 01:05 PM
RE: Pi Approximation Day - Albert Chan - 08-14-2019, 10:46 PM
RE: Pi Approximation Day - Albert Chan - 08-15-2019, 03:38 AM
RE: Pi Approximation Day - Claudio L. - 07-22-2019, 07:48 PM
RE: Pi Approximation Day - Dave Shaffer - 07-23-2019, 05:07 PM
RE: Pi Approximation Day - ijabbott - 07-23-2019, 05:18 PM
RE: Pi Approximation Day - jebem - 07-24-2019, 06:03 AM
RE: Pi Approximation Day - bshoring - 07-22-2019, 09:40 PM
RE: Pi Approximation Day - BartDB - 07-23-2019, 05:31 PM
RE: Pi Approximation Day - Gerson W. Barbosa - 07-23-2019 06:18 PM
RE: Pi Approximation Day - BartDB - 07-24-2019, 10:30 AM
RE: Pi Approximation Day - ijabbott - 07-23-2019, 05:09 PM
RE: Pi Approximation Day - Erwin - 07-23-2019, 08:26 PM
RE: Pi Approximation Day - Albert Chan - 07-25-2019, 01:26 PM
RE: Pi Approximation Day - Bill Duncan - 07-26-2019, 11:02 PM
RE: Pi Approximation Day - Leviset - 08-14-2019, 09:36 PM



User(s) browsing this thread: 2 Guest(s)