(12C Platinum) Sums of Powers of N numbers
|
07-29-2019, 04:12 AM
(This post was last modified: 08-25-2019 02:46 PM by Albert Chan.)
Post: #13
|
|||
|
|||
RE: (12C Platinum) Sums of Powers of N numbers
Noticed a pattern with Sk(n) = Σi^k formula, when extend n to negative numbers:
(see http://www.mikeraugh.org/Talks/Bernoulli...n-LACC.pdf, slide 26) Sk(-n) = (-1)^(k+1) * Sk(n-1) This allow the use of symmetries, to keep forward difference table numbers small. To force 0 in the center, start i = -floor(k/2), offset = i-1 Even k example: Σi^4 formula, forward difference table, start at offset of -3 (3 numbers before 1): 16 1 0 1 16 // i^4, i = -2 to 2 -15 -1 1 15 14 2 14 -12 12 24 S4(-3) = -S4(2) = -(1 + 16) = -17 S4(n) = -17 + \(16\binom{n+3}{1}-15\binom{n+3}{2}+14 \binom{n+3}{3}-12\binom{n+3}{4}+24\binom{n+3}{5}\) Odd k example: Σi^5 formula, forward difference table, start at offset of -3 (3 numbers before 1): -32 -1 0 1 32 243 // i^5, i = -2 to 3 31 1 1 31 211 -30 0 30 180 30 30 150 0 120 120 S5(-3) = +S5(2) = 1 + 32 = 33 S5(n) = 33 - \(32\binom{n+3}{1}+31\binom{n+3}{2}-30\binom{n+3}{3}+30\binom{n+3}{4}+120\binom{n+3}{6}\) Update: if needed, above expression can be transformed without offset. Example: \(\binom{n+3}{6} = \binom{n}{6} + 3\binom{n}{5} + 3\binom{n}{4} +\binom{n}{3}\) // See Vandermonde Convolution Formula |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)