Odd Angles Formula Trivia
|
08-14-2019, 01:54 PM
Post: #3
|
|||
|
|||
RE: Odd Angles Formula Trivia
We can show above sign flipping behavior, using Chebyshev Polynomial
By definition, Tn(cos(x)) = cos(n*x) Tn(cos(pi/2-x)) = cos(n*(pi/2-x)) = cos((n-1)*pi/2 + (pi/2-n*x)) Tn(sin(x)) = sin(n*x + (n-1)*pi/2) if n=4k+1, (n-1)*pi/2 ≡ 0 (mod 2*pi), then Tn(sin(x)) = sin(n*x+0) = sin(n*x) if n=4k−1, (n-1)*pi/2 ≡ pi (mod 2*pi), then Tn(sin(x)) = sin(n*x+pi) = - sin(n*x) QED Extend above for even n's: if n=4k+0, n*pi/2 ≡ 0 (mod 2*pi), then Tn(sin(x)) = cos(0-n*x) = cos(n*x) if n=4k+2, n*pi/2 ≡ pi (mod 2*pi), then Tn(sin(x)) = cos(pi-n*x) = - cos(n*x) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Odd Angles Formula Trivia - Albert Chan - 12-20-2018, 05:38 PM
RE: Odd Angles Formula Trivia - Albert Chan - 12-21-2018, 01:10 PM
RE: Odd Angles Formula Trivia - Albert Chan - 08-14-2019 01:54 PM
RE: Odd Angles Formula Trivia - Albert Chan - 08-15-2019, 01:55 AM
RE: Odd Angles Formula Trivia - Albert Chan - 08-15-2019, 03:42 PM
RE: Odd Angles Formula Trivia - Albert Chan - 12-15-2019, 01:03 AM
RE: Odd Angles Formula Trivia - Albert Chan - 12-15-2019, 01:49 AM
RE: Odd Angles Formula Trivia - Albert Chan - 01-22-2020, 12:45 AM
RE: Odd Angles Formula Trivia - Albert Chan - 10-13-2021, 03:40 AM
|
User(s) browsing this thread: 1 Guest(s)