1 + 2 + 3 + ... = -1/12
|
08-19-2019, 04:15 PM
(This post was last modified: 08-19-2019 07:47 PM by Albert Chan.)
Post: #15
|
|||
|
|||
RE: 1 + 2 + 3 + ... = -1/12
I finally see the logic of assignment a divergent sum to a value.
Example: find \(\sum _{10}^{25} 2^x x^2 \) with divergent "sum" t = \(\sum _{1}^{\infty} 2^x → \frac{2}{1-2} → -2 \) Getting coefficients of polynomial of t, to calculate the "sum" Code: x x^2 Forward Difference Table \(\sum _{10}^{\infty} 2^x x^2 = 2^9 \sum _{1}^{\infty} 2^x (x+9)^2 → 2^9 (100t + 21t^2 +2 t^3) → -67584\) \(\sum _{26}^{\infty} 2^x x^2 = 2^{25} \sum _{1}^{\infty} 2^x (x+25)^2 → 2^{25} (676t + 53t^2 +2 t^3) → -38788923392\) \(\sum _{10}^{25} 2^x x^2 = \sum _{10}^{\infty} 2^x x^2 - \sum _{26}^{\infty} 2^x x^2 → 38788855808\) Amazingly, it match true result Update: t polynomial trick always work. It is based on summation formula: \(F(x) = (\frac{-a^x}{1-a}) \{1 + (\frac{aΔ}{1-a}) + (\frac{aΔ}{1-a})^2 + \cdots \} u_x \) \(\sum_{x=0}^{n-1} a^x u_x = F(n) - F(0) \) Above formula, being a finite sum, does not require convergence. t polynomial trick assumed x from 1 to ∞, and F(∞) = 0, and simplify to T = -F(1): Let \(t = \frac{a}{1-a}\), then \(T= \sum_{x=1}^{\infty} a^x u_x = t \{1 + (tΔ) + (tΔ)^2 + \cdots\}u_x \) For divergent sum, assumption of F(∞) = 0 is wrong, but finite sum Ta - Tb still correct. |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 4 Guest(s)