Post Reply 
1 + 2 + 3 + ... = -1/12
08-19-2019, 04:15 PM (This post was last modified: 08-19-2019 07:47 PM by Albert Chan.)
Post: #15
RE: 1 + 2 + 3 + ... = -1/12
I finally see the logic of assignment a divergent sum to a value.

Example: find \(\sum _{10}^{25} 2^x x^2 \) with divergent "sum"

t = \(\sum _{1}^{\infty} 2^x → \frac{2}{1-2} → -2 \)

Getting coefficients of polynomial of t, to calculate the "sum"

Code:
x  x^2 Forward Difference Table
10 100
11 121 21
12 144 23 2

26 676
27 729 53
28 784 55 2

\(\sum _{10}^{\infty} 2^x x^2 = 2^9 \sum _{1}^{\infty} 2^x (x+9)^2 → 2^9 (100t + 21t^2 +2 t^3) → -67584\)

\(\sum _{26}^{\infty} 2^x x^2 = 2^{25} \sum _{1}^{\infty} 2^x (x+25)^2 → 2^{25} (676t + 53t^2 +2 t^3) → -38788923392\)

\(\sum _{10}^{25} 2^x x^2 = \sum _{10}^{\infty} 2^x x^2 - \sum _{26}^{\infty} 2^x x^2 → 38788855808\)

Amazingly, it match true result


Update: t polynomial trick always work. It is based on summation formula:

\(F(x) = (\frac{-a^x}{1-a}) \{1 + (\frac{aΔ}{1-a}) +
(\frac{aΔ}{1-a})^2 + \cdots \} u_x \)

\(\sum_{x=0}^{n-1} a^x u_x = F(n) - F(0) \)

Above formula, being a finite sum, does not require convergence.

t polynomial trick assumed x from 1 to ∞, and F(∞) = 0, and simplify to T = -F(1):

Let \(t = \frac{a}{1-a}\), then \(T= \sum_{x=1}^{\infty} a^x u_x = t \{1 + (tΔ) + (tΔ)^2 + \cdots\}u_x \)

For divergent sum, assumption of F(∞) = 0 is wrong, but finite sum Ta - Tb still correct.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-01-2018, 08:26 PM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Klemm - 10-01-2018, 09:09 PM
RE: 1 + 2 + 3 + ... = -1/12 - SlideRule - 10-01-2018, 09:25 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-01-2018, 11:34 PM
RE: 1 + 2 + 3 + ... = -1/12 - SlideRule - 10-01-2018, 11:56 PM
RE: 1 + 2 + 3 + ... = -1/12 - floppy - 10-27-2024, 04:50 PM
RE: 1 + 2 + 3 + ... = -1/12 - Johnh - 10-27-2024, 08:32 PM
RE: 1 + 2 + 3 + ... = -1/12 - pier4r - 10-03-2018, 03:42 PM
RE: 1 + 2 + 3 + ... = -1/12 - pier4r - 10-03-2018, 05:13 PM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Okken - 10-03-2018, 06:22 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-03-2018, 11:13 AM
RE: 1 + 2 + 3 + ... = -1/12 - dm319 - 10-27-2024, 10:29 AM
RE: 1 + 2 + 3 + ... = -1/12 - mfleming - 10-04-2018, 01:38 AM
RE: 1 + 2 + 3 + ... = -1/12 - SlideRule - 10-04-2018, 11:48 AM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 08-19-2019 04:15 PM
RE: 1 + 2 + 3 + ... = -1/12 - toml_12953 - 08-19-2019, 05:22 PM
RE: 1 + 2 + 3 + ... = -1/12 - ijabbott - 08-19-2019, 07:17 PM
RE: 1 + 2 + 3 + ... = -1/12 - jebem - 08-20-2019, 04:03 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-26-2024, 06:02 PM
RE: 1 + 2 + 3 + ... = -1/12 - AnnoyedOne - 10-26-2024, 06:27 PM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Klemm - 10-26-2024, 09:05 PM
RE: 1 + 2 + 3 + ... = -1/12 - AnnoyedOne - 10-27-2024, 12:36 PM
RE: 1 + 2 + 3 + ... = -1/12 - Nigel (UK) - 10-27-2024, 04:17 PM
RE: 1 + 2 + 3 + ... = -1/12 - AnnoyedOne - 10-27-2024, 04:35 PM
RE: 1 + 2 + 3 + ... = -1/12 - AnnoyedOne - 10-27-2024, 05:15 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-27-2024, 05:22 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-27-2024, 06:09 PM
RE: 1 + 2 + 3 + ... = -1/12 - carey - 10-27-2024, 09:55 PM
RE: 1 + 2 + 3 + ... = -1/12 - Johnh - 10-26-2024, 11:08 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-27-2024, 12:06 AM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Klemm - 10-27-2024, 03:34 AM
RE: 1 + 2 + 3 + ... = -1/12 - Namir - 10-27-2024, 12:04 PM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Klemm - 10-27-2024, 12:19 PM



User(s) browsing this thread: 4 Guest(s)