Another Ramanujan Trick
|
09-29-2019, 03:23 PM
Post: #6
|
|||
|
|||
RE: Another Ramanujan Trick
(09-29-2019 01:28 PM)ttw Wrote: Continued fractions (to anything) give a sequence of p(i))/q(i) of numerators and denominators. The statement is true, but you can tighten the bound with error < \(\Large{1 \over q_{i}q_{i+1} } \) (97; 2, 2, 3, 1) = 2143 / 22 (97; 2, 2, 3, 1, 16539) = 35444733 / 363875 Pi^4 must be between 2 convergents. gap = 1 / (22 * 363875) = 1 / 8005250 To get first fraction for Pi^4 with estimate better than 2143/22 Convergent before 2143/22 is 1656/17, solve for semi-convergent with less |error| XCas> fsolve(pi^4 - (1656+2143k)/(17+22k) = 2143/22 - pi^4, k) → k ≈ 8269.54 Semi-convergent error switched sign when k=8270. To confirm: XCas> float(pi^4 .- [2143/22, 17724266/181957]) → (1.24912e-7, -1.24898e-7) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 5 Guest(s)