Post Reply 
Another Ramanujan Trick
10-06-2019, 09:07 PM
Post: #20
RE: Another Ramanujan Trick
(09-30-2019 10:24 PM)Valentin Albillo Wrote:  
(09-30-2019 03:10 AM)Gerson W. Barbosa Wrote:  They have prompted me to search for an 82-digit one belonging to the same group. I’ve finally found it in Tito Pieza’s blog here

I did follow the link you mention but I was less than impressed. It may produce 82 correct digits but it's far too complex to be regarded as a remarkable approximation, the number of digits and operations needed is on the same ballpark as the number of correct digits produced.


Ok, then the following might almost double that. Well, sort of cheating, but at least no use of any inverse trig function that would just kill the fun.

ln(640320^3 + 744)/√163 + sinh(sin(ln(640320^3 + 744)/√163))

Best regards,

Gerson.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Another Ramanujan Trick - ttw - 09-29-2019, 06:45 AM
RE: Another Ramanujan Trick - Thomas Okken - 09-29-2019, 09:17 AM
RE: Another Ramanujan Trick - ijabbott - 10-03-2019, 07:21 AM
RE: Another Ramanujan Trick - ijabbott - 10-03-2019, 08:23 PM
RE: Another Ramanujan Trick - Gerson W. Barbosa - 10-06-2019 09:07 PM
RE: Another Ramanujan Trick - ttw - 09-29-2019, 01:28 PM
RE: Another Ramanujan Trick - Albert Chan - 09-29-2019, 03:23 PM
RE: Another Ramanujan Trick - ttw - 09-29-2019, 05:09 PM
RE: Another Ramanujan Trick - Helix - 10-19-2019, 11:59 PM
RE: Another Ramanujan Trick - grsbanks - 10-19-2019, 05:46 PM
RE: Another Ramanujan Trick - rprosperi - 10-19-2019, 11:43 PM



User(s) browsing this thread: 3 Guest(s)