(SR-52) In defense of linear quadrature rules
|
12-22-2019, 02:14 PM
Post: #1
|
|||
|
|||
(SR-52) In defense of linear quadrature rules
An extract from In Defense of Linear Quadrature Rules, William Squire (Aerospace Engineering Dept., West Virginia University), Comp. & Maths with Apple, Vol. 7, pp. 147.-149, Pergamon Press Ltd., 1981
Abstract--lt is shown that appropiate linear quadrature rules can handle integrands with singularities at or near the end points more effectively than the nonlinear methods proposed by Werner and Wuytack. A special 10 point Gauss rule gives good results. A method with exponential convergence gives high accuracy with a moderate number of nodes. Both procedures were implemented on a programmable hand calculator. INTRODUCTION The purpose of this note is to demonstrate that: (1) a special 10 point Gauss rule for integrands with singularities at or near the endpoints proposed by Harris and Evans [2] will give results comparing favourably to any other procedure using a comparable number of nodes. (2) A quadrature rule, which Stenger [3] has shown to have exponential convergence, gives very accurate results for such integrands with a moderate number of function evaluations. Both these procedures were implemented on an SR 52 programmable hand calculator. … The SR-52 implementation is given in Appendix A … … The method was implemented on an SR-52 as described in Appendix B … … APPENDIX A Harris-Evans 10 point rule … … APPENDIX B SR-52 program for Stenger quadrature (equation 1) … BEST! SlideRule |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(SR-52) In defense of linear quadrature rules - SlideRule - 12-22-2019 02:14 PM
RE: (SR-52) In defense of linear quadrature rules - Albert Chan - 12-22-2019, 06:23 PM
|
User(s) browsing this thread: 1 Guest(s)