Hypergeometric function – Perimeter of an Ellipse and other applications (wp34s)
|
01-11-2020, 01:20 AM
(This post was last modified: 01-13-2020 02:59 AM by Gerson W. Barbosa.)
Post: #6
|
|||
|
|||
RE: Hypergeometric function – Perimeter of an Ellipse and other applications (wp34s)
This new approximation formula involving AGM is more accurate than the previous one:
p ≈ 2π{agm(a,b)[77h⁴ - 768(h² - 1)] - [54h⁴ - 512(h² - 1)]√(ab)}/[23h⁴ - 256(h² - 1)] where h = [(a - b)/(a + b)] wp34s program: 001:LBL A 002:©ENTER 003:STO- Y 004:RCL+ T 005:/ 006:x² 007:STO I 008:STO× I 009:DEC X 010:# 128 011:STO+ X 012:× 013:⇆ ZYXY 014:AGM 015:RCL L 016:RCL× T 017:√ 018:# 054 019:RCL× I 020:RCL- T 021:RCL- T 022:× 023:# 077 024:RCL× I 025:RCL- T 026:RCL- T 027:RCL- T 028:RCL× Z 029:- 030:R↑ 031:# 023 032:RCL× I 033:- 034:/ 035:STO+ X 036:# π 037:× 038:RTN Let’s try it with some examples: 9 ENTER 8 A -> 53.453285002971875533(62066) 9 ENTER 7 A -> 50.46202449950552(54160) 9 ENTER 6 A -> 47.596318767871(06954) 9 ENTER 4 A -> 42.36559853(28349) 9 ENTER 3 A -> 40.094679(4402) 9 ENTER 2 A -> 38.155(3995) 9 ENTER 1 A -> 36.68(6938) Halley’s comet orbit: a = 2667950000 km b = 678281900 km p ≈ 11464317964.011670 km p = 11464318984.102995 km difference: 1020.091 km Let’s compare it with Ramanujan’s second approximation: p ≈ π(a + b){1 + 3h²/[10 + √(4 - 3h²)]} where h = [(a - b)/(a + b)] 039:LBL B 040:⇆ XYYZ 041:STO+ Z 042:- 043:RCL/ Y 044:x² 045:# 003 046:× 047:SDR 001 048:# 004 049:RCL- L 050:√ 051:SDR 001 052:INC X 053:/ 054:INC X 055:× 056:# π 057:× 058:END 9 ENTER 8 B -> 53.45328500297187(49239) 9 ENTER 7 B -> 50.46202449950(44277) 9 ENTER 6 B -> 47.596318767(75370) 9 ENTER 4 B -> 42.365598(45195) 9 ENTER 3 B -> 40.09467(8339) 9 ENTER 2 B -> 38.155(3915) 9 ENTER 1 B -> 36.687(5063) Halley’s comet orbit: a = 2667950000 km b = 678281900 km p ≈ 11464316399.11117 km p = 11464318984.10300 km difference: 2584.992 km As the ellipse becomes more and more eccentric Ramanujan’s formula will eventually give smaller errors when compared to the AGM approximation, but overall the latter is better, at the cost of more complexity. For calculators with built-in AGM like the wp34s, that should be an option when Hypergeometric function is not available. ——- PS: 01-13-2020, 02:59 AM Here’s yet another approximation for the perimeter of the ellipse. It’s a bit less accurate than the previous one, but no square root is required, only basic arithmetic operations. p ≈ π{(a + b)[h²(3h² - 136) + 320] + [a b/(a + b)](96h² - 256)}/[h²(3h² - 112) + 256] where h = [(a - b)/(a + b)] wp34s program: 001:LBL A 002:©ENTER 003:STO-Y 004:RCL+ T 005:/ 006:x² 007:STO I 008:R↓ 009:|| 010:RCL L 011:RCL+ Z 012:# 003 013:RCL× I 014:# 136 015:- 016:RCL× I 017:# 160 018:+ 019:RCL+ L 020:× 021:# 096 022:RCL× I 023:# 128 024:STO+ X 025:- 026:RCL× Z 027:+ 028:# 003 029:RCL× I 030:# 112 031:- 032:RCL× I 033:# 128 034:+ 035:RCL+ L 036:/ 037:# π 038:× 039:END 9 ENTER 8 A -> 53.45328500297187(21835) 9 ENTER 7 A -> 50.462024499(4995106) 9 ENTER 6 A -> 47.596318767(23094) 9 ENTER 4 A -> 42.365598(09087) 9 ENTER 3 A -> 40.09467(3044) 9 ENTER 2 A -> 38.155(3243) 9 ENTER 1 A -> 36.68(6589) Halley’s comet orbit: a = 2667950000 km b = 678281900 km p ≈ 11464306668.94052 km p = 11464318984.10299 km difference: 12315.162 km |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)