(12C Platinum) Length of An Ellipse
|
01-16-2020, 10:18 PM
(This post was last modified: 01-18-2020 01:04 AM by Albert Chan.)
Post: #7
|
|||
|
|||
RE: (12C Platinum) Length of An Ellipse
For ellipse perimeter using integrals, we can use Weierstrass Substitution.
\(t = \tan(x/2)\quad\quad\quad → dt = sec^2(x/2)/2\;dx\quad\quad\quad\quad\quad\quad \; → dx = \left({2\over 1+t^2}\right)\;dt \) Ellipse perimeter = \(4a \int _0 ^{\pi \over 2} \sqrt{1 - e^2\sin^2 x}\;dx = 4a \int _0 ^1 \sqrt{1 - e^2\left({2t \over 1+t^2}\right)^2} \left({2\over 1+t^2}\right)\;dt \) Example, Casio FX-115ES Plus, a=50, b=10 → e² = 1-(b/a)² = 24/25 Perimeter = 210.100445396890 // 4*50*EllipticE(24/25) dx integral = 210.100445053320 // time = 4.0 sec dt integral = 210.100445398816 // time = 2.8 sec Turns out dx integral work better with simple Trapezoidal rule ! John D Cook's blog: Three surprises with the trapezoid rule Quote:2. Although the trapezoid rule is inefficient in general, it can be shockingly efficient for periodic functions. Redo above example for ellipse perimeter. (n = number of trapezoids) Code: n dx trapezoid dx simpson dx romberg |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(12C Platinum) Length of An Ellipse - Gamo - 07-07-2019, 05:44 AM
RE: (12C Platinum) Length of An Ellipse - Leviset - 07-07-2019, 10:35 AM
RE: (12C Platinum) Length of An Ellipse - Albert Chan - 07-07-2019, 04:06 PM
RE: (12C Platinum) Length of An Ellipse - Albert Chan - 07-08-2019, 02:53 PM
RE: (12C Platinum) Length of An Ellipse - Gamo - 07-08-2019, 04:51 AM
RE: (12C Platinum) Length of An Ellipse - John Keith - 07-23-2019, 05:06 PM
RE: (12C Platinum) Length of An Ellipse - Albert Chan - 01-16-2020 10:18 PM
|
User(s) browsing this thread: 2 Guest(s)