Post Reply 
Perimeter of Ellipse
01-19-2020, 03:56 AM
Post: #17
RE: Perimeter of Ellipse
(12-29-2019 07:58 PM)Gerson W. Barbosa Wrote:  We can do better:

\(p\approx \frac{\pi \left [ \left ( 15h\sqrt{1+\frac{3h}{8-3h\sqrt{2}}}-80\right )\left ( a^{2}+\frac{6}{5}ab+b^{2} \right ) +4h\left ( a^{2}+2ab+b^{2} \right ) \right ]}{\left ( 12h\sqrt{1+\frac{3h}{8-3h\sqrt{2}}}+4h-64\right )\left ( a+b \right )}\)


where

\(h = \left (\frac{a-b}{a+b} \right )^{2 }\)

This one wasn't particularly difficult to find (might explain later).

We can simplify this a bit.

Let \(\large c = \sqrt{1+\frac{3h}{8-3h\sqrt{2}}}\quad → p ≈ \pi(a+b)\Large\left({3ch^2 + 12(c-1)h - 64 \over 4(3c+1)h-64}\,\right) \)

If \(\large c = 1\), above simplified to: \(\quad\large p ≈ \pi(a+b)\Large\left({3h^2 - 64 \over 16h-64}\,\right) \)

This matched ellipse perimeter Pade [2,1] approximation.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Perimeter of Ellipse - Joe Horn - 03-05-2016, 04:19 PM
RE: Perimeter of Ellipse - Wes Loewer - 03-06-2016, 11:55 AM
RE: Perimeter of Ellipse - Wes Loewer - 03-06-2016, 02:16 PM
RE: Perimeter of Ellipse - Joe Horn - 03-07-2016, 03:34 PM
RE: Perimeter of Ellipse - ggauny@live.fr - 07-11-2019, 05:02 PM
RE: Perimeter of Ellipse - TASP - 03-06-2016, 02:40 PM
RE: Perimeter of Ellipse - parisse - 03-06-2016, 06:42 PM
RE: Perimeter of Ellipse - SlideRule - 03-07-2016, 01:16 PM
RE: Perimeter of Ellipse - parisse - 03-09-2016, 08:39 AM
RE: Perimeter of Ellipse - Albert Chan - 03-24-2019, 12:42 PM
RE: Perimeter of Ellipse - Albert Chan - 01-19-2020 03:56 AM
RE: Perimeter of Ellipse - Albert Chan - 01-19-2020, 11:00 PM
RE: Perimeter of Ellipse - Albert Chan - 01-21-2020, 05:16 PM
RE: Perimeter of Ellipse - Albert Chan - 01-23-2020, 01:40 PM
RE: Perimeter of Ellipse - Albert Chan - 06-05-2020, 03:28 AM
RE: Perimeter of Ellipse - Albert Chan - 08-01-2020, 12:31 PM
RE: Perimeter of Ellipse - Albert Chan - 06-06-2020, 05:12 PM
RE: Perimeter of Ellipse - hazem - 04-11-2023, 09:43 PM
RE: Perimeter of Ellipse - rprosperi - 04-12-2023, 01:53 AM
RE: Perimeter of Ellipse - hazem - 04-13-2023, 02:06 PM
RE: Perimeter of Ellipse - floppy - 04-13-2023, 02:20 PM
RE: Perimeter of Ellipse - Werner - 04-12-2023, 05:43 AM
RE: Perimeter of Ellipse - rprosperi - 04-12-2023, 12:44 PM
RE: Perimeter of Ellipse - floppy - 04-12-2023, 07:22 PM
RE: Perimeter of Ellipse - Albert Chan - 04-13-2023, 05:23 PM
RE: Perimeter of Ellipse - floppy - 04-15-2023, 06:21 PM



User(s) browsing this thread: 1 Guest(s)