Perimeter of Ellipse
|
01-21-2020, 05:16 PM
(This post was last modified: 01-23-2020 01:56 PM by Albert Chan.)
Post: #20
|
|||
|
|||
RE: Perimeter of Ellipse
(01-19-2020 11:00 PM)Albert Chan Wrote: \(\large p(a,b) = 2× \left( p({a+b \over 2}, \sqrt{ab}) - {\pi a b \over AGM(a,b)}\right)\) Amazingly, the less eccentric ellipse have the eccentricity of h lua> sqrt = math.sqrt lua> a, b = 2667950000, 678281900 -- numbers from here lua> = sqrt(1-(b/a)^2) → e = 0.967142904276921 lua> = (a-b)/(a+b) → h = 0.5945995852827773 = e' lua> lua> a, b = (a+b)/2, sqrt(a*b) lua> = sqrt(1-(b/a)^2) → e' = 0.5945995852827773 lua> = (a-b)/(a+b) → h' = 0.10863394673347321 = e'' Prove: Assume a ≥ b, let a', b' = (a+b)/2, √(ab) e' = √(1-(b'/a')²) = √(1 - 4ab/(a+b)²) = (a-b)/(a+b) = h |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 4 Guest(s)