Post Reply 
HP71B Integral Questions
02-03-2020, 11:15 PM (This post was last modified: 02-03-2020 11:40 PM by Albert Chan.)
Post: #5
RE: HP71B Integral Questions
(02-02-2020 03:31 PM)Albert Chan Wrote:  From the user's manual, about the algoritm, it uses Romberg's method, after a non-linear transform.

There was an error in the manual. x = ½(3u-u³) substitution *required* integrand limit -1 to 1, not a to b

\(\large \int _{-1} ^1 f(x) dx = {3 \over 2}\int _{-1} ^ 1 (1-u^2) f \left(
{ u (3-u^2) \over 2} \right) du \)

For a general case, with integrand limit a to b, we have:

\(\large \int _a ^b f(x) dx = {3(b-a) \over 4}\int _{-1} ^ 1 (1-u^2) f \left(
{ 2(b+a) + (b-a) u (3-u^2) \over 4} \right) du \)

From the manual:
Quote:INTEGRAL uses extended precision. Internally, sums are accumulated in 15-digit numbers ...
up to 65,535 points can be sampled on each subinterval, thus computing the integral to greater precision.

Trivia:
For 2 intervals, h = 1 → 2^16 intervals, h = 1/2^15 = 0.00003 05175 78125 (exact)
With 15 digits precision, and |u| ≤ 1, this implied INTEGRAL internally calculated u's are all exact.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
HP71B Integral Questions - Albert Chan - 02-02-2020, 03:31 PM
RE: HP71B Integral Questions - Albert Chan - 02-03-2020, 01:58 PM
RE: HP71B Integral Questions - J-F Garnier - 02-03-2020, 03:00 PM
RE: HP71B Integral Questions - Albert Chan - 02-03-2020, 04:15 PM
RE: HP71B Integral Questions - Albert Chan - 02-03-2020 11:15 PM
RE: HP71B Integral Questions - J-F Garnier - 02-05-2020, 08:43 AM
RE: HP71B Integral Questions - Albert Chan - 02-05-2020, 05:09 PM
RE: HP71B Integral Questions - Wes Loewer - 02-06-2020, 06:53 PM
RE: HP71B Integral Questions - Albert Chan - 02-06-2020, 11:16 PM
RE: HP71B Integral Questions - Wes Loewer - 02-07-2020, 03:49 AM
RE: HP71B Integral Questions - Albert Chan - 02-07-2020, 08:14 AM
RE: HP71B Integral Questions - J-F Garnier - 02-07-2020, 08:23 AM
RE: HP71B Integral Questions - Wes Loewer - 02-07-2020, 01:19 PM
RE: HP71B Integral Questions - Albert Chan - 02-07-2020, 05:08 PM
RE: HP71B Integral Questions - J-F Garnier - 02-07-2020, 05:54 PM
RE: HP71B Integral Questions - Wes Loewer - 02-07-2020, 08:16 PM
RE: HP71B Integral Questions - Wes Loewer - 02-07-2020, 08:12 PM
RE: HP71B Integral Questions - J-F Garnier - 02-05-2020, 06:20 PM
RE: HP71B Integral Questions - Albert Chan - 02-05-2020, 07:52 PM
RE: HP71B Integral Questions - J-F Garnier - 02-06-2020, 08:37 AM
RE: HP71B Integral Questions - Wes Loewer - 02-08-2020, 10:46 AM
RE: HP71B Integral Questions - J-F Garnier - 02-08-2020, 10:59 AM
RE: HP71B Integral Questions - Wes Loewer - 02-08-2020, 03:04 PM
RE: HP71B Integral Questions - Albert Chan - 02-09-2020, 01:43 PM
RE: HP71B Integral Questions - Wes Loewer - 02-09-2020, 08:33 PM
RE: HP71B Integral Questions - Albert Chan - 02-10-2020, 01:33 PM
RE: HP71B Integral Questions - Wes Loewer - 02-09-2020, 09:03 PM
RE: HP71B Integral Questions - Albert Chan - 02-11-2020, 05:03 PM
RE: HP71B Integral Questions - Albert Chan - 02-11-2020, 11:57 PM
RE: HP71B Integral Questions - Albert Chan - 02-21-2020, 11:23 PM



User(s) browsing this thread: 4 Guest(s)