Post Reply 
Wallis' product exploration
02-08-2020, 07:53 PM
Post: #5
RE: Wallis' product exploration
(02-08-2020 07:13 PM)Allen Wrote:  Reminds me the highly composite binomial coefficients \( \binom{2n}{n} \).

That is because the formula had this denominator (squared!)

\(\Large 2\prod _{k=1} ^{k=n} {4k^2 \over 4k^2-1} =
{2^{4n+2} \over 4n+2} รท \binom{2n}{n}^2 \)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Wallis' product exploration - pinkman - 02-07-2020, 10:55 PM
RE: Wallis' product exploration - pinkman - 02-08-2020, 02:42 PM
RE: Wallis' product exploration - Allen - 02-08-2020, 07:13 PM
RE: Wallis' product exploration - Albert Chan - 02-08-2020 07:53 PM
RE: Wallis' product exploration - Allen - 02-08-2020, 08:58 PM
RE: Wallis' product exploration - pinkman - 02-09-2020, 05:44 AM
RE: Wallis' product exploration - Allen - 02-08-2020, 08:13 PM
RE: Wallis' product exploration - Allen - 02-09-2020, 01:08 PM
RE: Wallis' product exploration - Allen - 02-09-2020, 01:57 PM
RE: Wallis' product exploration - Allen - 02-09-2020, 03:08 PM
RE: Wallis' product exploration - pinkman - 02-09-2020, 02:14 PM
RE: Wallis' product exploration - EdS2 - 02-10-2020, 10:35 AM
RE: Wallis' product exploration - pinkman - 02-11-2020, 10:02 AM
RE: Wallis' product exploration - pinkman - 02-12-2020, 10:01 PM



User(s) browsing this thread: 1 Guest(s)