Post Reply 
HP71B Integral Questions
02-09-2020, 01:43 PM (This post was last modified: 02-09-2020 07:01 PM by Albert Chan.)
Post: #24
RE: HP71B Integral Questions
(02-07-2020 05:08 PM)Albert Chan Wrote:  Since trapezoids and midpoints are using the same points, I tried to tease out the algorithm, using f(x) = x*log(1+x)

10 DEF FNF(X)=X*LOGP1(X)
20 DEF FNG(U)=1.5*(1-U*U)*FNF(U*(3-U*U)/2)
30 M1=2*FNG(0)
40 M2=FNG(-.5)+FNG(.5)
50 M4=.5*(FNG(-.75)+FNG(-.25)+FNG(.25)+FNG(.75))
60 T1=0
70 T2=(T1+M1)/2
80 T4=(T2+M2)/2
90 T8=(T4+M4)/2
100 DISP "MIDPOINTS=";(M1-20*M2+64*M4)/45
110 DISP "TRAPEZOID=";(-T1+84*T2-1344*T4+4096*T8)/2835
120 DISP "INTEGRAL =";INTEGRAL(-1,1,1,FNF(IVAR))

>RUN
MIDPOINTS= 1.02693666365
TRAPEZOID= .978017069767
INTEGRAL7= .97801706977

Besides showing INTEGRAL algorithm using romberg's method with trapezoids, I noticed a few things.
  • Integrand that evaluated to zero for end points meant the outside trapezoids is approximated as triangles.
    Area is 0 if there no sample points in between. Thus trapezoid area, T1 = 0
  • Even though the midpoint numbers does not incorprate previous sample points, it will, when we do the extrapolation.
    For 7 sample points, midpoints extrapolated estimate = (M1-20*M2+64*M4)/45
  • For this example, extrapolated trapezoid numbers seems to converge with half the error.
    We may improve the estimate wih a 2:1 weighted average of both approaches.
    (unfortunately, in general, we have no idea what the weight is)

    Code:
    points  t=trapezoids    m=midpoints     (t+m)/2         (2t+m)/3
    7       0.9780170698    1.0269366637    1.0024768667    0.9943236011
    15      0.9945010276    1.0108562045    1.0026786161    0.9999527533
    31      0.9986339048    1.0027587099    1.0006963073    1.0000088398
    63      0.9996599242    1.0006854427    1.0001726835    1.0000017637
    127     0.9999151794    1.0001704034    1.0000427914    1.0000002541
    255     0.9999788206    1.0000424598    1.0000106402    1.0000000336
    511     0.9999947084    1.0000105961    1.0000026523    1.0000000043
    1023    0.9999986775    1.0000026466    1.0000006621    1.0000000005
    2047    0.9999996694    1.0000006613    1.0000001654    1.0000000001

Note: \(\int _{-1}^1 x \log(1+x)\;dx = 1\)
We can prove using integration by parts, but is easier with symmetry

\(\log(1+x) = \int _0 ^x {dt\over1+t} = \int _0 ^x (1-t+t^2-t^3+t^4+\;...) dt
= {x\over1} - {x^2\over2} + {x^3\over3} - {x^4\over4} +\; ... \)

\(\int _{-1}^1 x \log(1+x)\;dx
= \int _{-1}^1 ({x^2\over1}-{x^3\over2}+{x^4\over3}-{x^5\over4}+\; ... )\; dx
= 2 \int _0 ^1 ({x^2\over1} + {x^4\over3} + {x^6\over5} +\;...) dx
\)

Summing integrated terms, we have a telescoping series Smile

\({2\over1×3} + {2\over3×5} + {2\over5×7} + \;... = {1\over1}-{1\over3} + {1\over3}-{1\over5}+{1\over5}-{1\over7}+\;... = 1\)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
HP71B Integral Questions - Albert Chan - 02-02-2020, 03:31 PM
RE: HP71B Integral Questions - Albert Chan - 02-03-2020, 01:58 PM
RE: HP71B Integral Questions - J-F Garnier - 02-03-2020, 03:00 PM
RE: HP71B Integral Questions - Albert Chan - 02-03-2020, 04:15 PM
RE: HP71B Integral Questions - Albert Chan - 02-03-2020, 11:15 PM
RE: HP71B Integral Questions - J-F Garnier - 02-05-2020, 08:43 AM
RE: HP71B Integral Questions - Albert Chan - 02-05-2020, 05:09 PM
RE: HP71B Integral Questions - Wes Loewer - 02-06-2020, 06:53 PM
RE: HP71B Integral Questions - Albert Chan - 02-06-2020, 11:16 PM
RE: HP71B Integral Questions - Wes Loewer - 02-07-2020, 03:49 AM
RE: HP71B Integral Questions - Albert Chan - 02-07-2020, 08:14 AM
RE: HP71B Integral Questions - J-F Garnier - 02-07-2020, 08:23 AM
RE: HP71B Integral Questions - Wes Loewer - 02-07-2020, 01:19 PM
RE: HP71B Integral Questions - Albert Chan - 02-07-2020, 05:08 PM
RE: HP71B Integral Questions - J-F Garnier - 02-07-2020, 05:54 PM
RE: HP71B Integral Questions - Wes Loewer - 02-07-2020, 08:16 PM
RE: HP71B Integral Questions - Wes Loewer - 02-07-2020, 08:12 PM
RE: HP71B Integral Questions - J-F Garnier - 02-05-2020, 06:20 PM
RE: HP71B Integral Questions - Albert Chan - 02-05-2020, 07:52 PM
RE: HP71B Integral Questions - J-F Garnier - 02-06-2020, 08:37 AM
RE: HP71B Integral Questions - Wes Loewer - 02-08-2020, 10:46 AM
RE: HP71B Integral Questions - J-F Garnier - 02-08-2020, 10:59 AM
RE: HP71B Integral Questions - Wes Loewer - 02-08-2020, 03:04 PM
RE: HP71B Integral Questions - Albert Chan - 02-09-2020 01:43 PM
RE: HP71B Integral Questions - Wes Loewer - 02-09-2020, 08:33 PM
RE: HP71B Integral Questions - Albert Chan - 02-10-2020, 01:33 PM
RE: HP71B Integral Questions - Wes Loewer - 02-09-2020, 09:03 PM
RE: HP71B Integral Questions - Albert Chan - 02-11-2020, 05:03 PM
RE: HP71B Integral Questions - Albert Chan - 02-11-2020, 11:57 PM
RE: HP71B Integral Questions - Albert Chan - 02-21-2020, 11:23 PM



User(s) browsing this thread: 3 Guest(s)